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Abstract

We study optimal capital-income taxation in an economy in which search frictions in physical

capital markets give rise to flows of economic profit. These profit flows are necessary compen-

sation for sunk search costs of entry into the capital market. Viewed in this way, profits are

quasi-rents. At any point in time, however, profit flows from existing matches can also be viewed

as pure rents. Whether a Ramsey government considers profit flows as pure rents or as quasi-

rents is crucial for whether and to what extent capital-income taxation should be used to tax

profits. We prove that if the government treats profits as quasi-rents, the canonical long-run

zero-capital-tax prescription arises. If profits are instead treated as pure rents, the long-run

optimal capital-income tax is non-zero, with a calibrated version of this economy featuring a

capital-income tax rate of over 30 percent. The sharply contrasting results are not due to any

lack of commitment. Rather, because profit flows are explicitly linked to free-entry conditions,

a Ramsey government has an economic basis for adopting either the pure-rent view or the

quasi-rent view. In the long run, however, the quasi-rent equilibrium is welfare-superior.
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1 Introduction

We study optimal capital-income taxation in an environment in which search frictions in physical

capital markets give rise to economic profits. In contrast to many macroeconomic models that

feature positive economic profits, profits in our environment are the returns to capital demanders

(firms) for sunk search costs of trying to locate the appropriate capital for their investment projects.

Profit flows thus do not arise for reasons completely exogenous to the economy, as occurs in many

popular macroeconomic models. In such models, profits represent pure rents. In contrast, profits

in our environment are quasi-rents; i.e., rents that compensate for the ex-ante sunk costs necessary

to overcome allocation frictions. We show that if the Ramsey government views all of these profits

as quasi-rents, a zero capital-income tax is optimal in the long run. On the other hand, if the

Ramsey government views profits from existing matches as pure rents, a positive capital-income

tax is optimal in the long run. In a calibrated version of the model, the optimal capital-income tax

rate under this latter view of profits is around 30 percent. Our analysis thus nests in one framework

two main competing views of capital-income taxation: the celebrated result of Chamley (1986) and

Judd (1985) of zero-capital-taxation on the one hand, and the notion that capital income taxes can

and should be used to tax economic profits on the other.

It is widely-understood in tax theory that positive taxes on capital income can serve as an

indirect means of taxing dividend income from economic profits. Indeed, the quite high capital tax

rates observed in, say, the United States, are often interpreted to be a form of profit and dividend

taxation. For example, Atkeson, Chari, and Kehoe (1999) begin their early review of the theory of

capital-income taxation by stating as much. Underlying this view of capital-income taxation is the

assumption that complete (100 percent) confiscation of dividend income is prohibited, which is the

most empirically-relevant case for policy. Given less than complete confiscation of dividends, profit

flows represent a potentially inelastic source of revenue for a government that needs to finance

expenditures through distortionary taxation. Jones, Manuelli, and Rossi (1997) and Correia (1996)

were the first to show in a dynamic macroeconomic context that positive capital income taxation can

optimally serve as a means for taxing part of such rents. A pure-rent view of profits also describes the

widely-used Dixit-Stiglitz framework of monopolistic competition, and Guo and Lansing (1999) have

shown that positive capital-income taxation optimally taxes profit flows in such an environment,

as well.

One common feature of all of these papers, however, is that the profits that are indirectly taxed

exist because they are pure rents, imposed exogenously on the structure of the model economy.

A natural question, then, is whether or not the resulting optimal policy prescription is robust to

a modeling framework in which rents arise endogenously as a result of the optimizing behavior of

private agents who face ex-ante entry costs.
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We examine this question using the search-based general-equilibrium model of Kurmann and

Petrosky-Nadeau (2007) in which the exchange of physical capital from households to firms requires

both time and resources in order to find a trading partner. The model naturally implies that capital-

firm relationships are long-lived and that at any given point in time, a fraction of existing capital

remains unmatched. Both of these implications are readily observable in the data and cannot be

captured by the neoclassical benchmark where, by definition, capital markets are frictionless.

The costly matching process for physical capital at the core of our model gives rise endogenously

to match-specific rents. Both firms and households must make ex-ante entry decisions prior to

production; as a result, profit flows carry both a quasi- as well as a pure-rent interpretation.

Flow profits are quasi-rents in the sense that they are necessary for entry, however once entry is

established the rents are essentially pure. This dual nature of profits turns out to be crucial for

whether and to what extent capital-income taxation should be used to tax profits.

Under the pure-rent view, we prove analytically that the optimal capital-income-tax is positive.

As the government commits to the optimal policy rule, it considers existing matches as a stock

whose present value can be manipulated by tax policy. All the government is concerned about are

subsequent flows in and out of the capital market. To the extent that these flows are small relative

to the stock of existing matches, the welfare costs of distorting the intertemporal margin are out-

weighed by the gains resulting from improvements in labor market efficiency. A calibrated version

of our economy show that the optimal capital income tax, at over 30 percent, is quantitatively

quite large. The view that the capital tax should be used to indirectly tax rents is reminiscent of

the intuition present in Jones, Manuelli, and Rossi (1997), Correia (1996), and Guo and Lansing

(1999).

In contrast, under the quasi-rent view, we prove analytically that the canonical zero optimal

capital-income tax result obtains in our environment despite the endogenous nature of profit flows.

Even though the Ramsey government faces an existing stock of capital matches when it commits

to the optimal policy rule, it understands that all of these matches eventually need to be replaced

by new ones. In the long-run, all capital matches are subject to distortions that arise on the in-

tertemporal margin from taxing quasi-rents indirectly thought the price of capital. The government

therefore restricts itself from manipulating the present value of flow profits from any capital match.

One can interpret the results of our model as nesting — in a unified framework — both a

Chamley-Judd type of intuition for zero-capital income taxation as well as the intuition present

in models where the capital income tax is used to indirectly tax rents. This nesting allows us to

make a welfare comparison between the two views: numerical results show that a quasi-rent view of

profits is to be preferred. In this view, steady state lifetime welfare of the representative consumer

is about three percent higher, in consumption terms, than under the optimal policy in which profits
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are viewed as pure rents.

It is worth explicitly noting that the Ramsey government fully commits to its policy rule in

both the pure-rent and the quasi-rent equilibrium. The differences between the two optimal-policy

prescriptions are thus not driven by discretionary expropriation of profits. Instead, how the gov-

ernment treats free-entry conditions admits two different equilibrium concepts. Armenter (2008)

also makes this point in a model with a fixed, untaxed factor of production. He shows that if

the government treats the present value of the rents arising from this factor as predetermined, the

canonical Chamley-Judd result arises. If instead, the government does not impose this restriction,

the optimal capital-income tax is generally non-zero. In Armenter’s (2008) framework, this restric-

tion is hard to rationalize because rents are imposed exogenously on the model. Our analysis with

explicit entry costs and quasi-rents, by contrast, provides a clear economic interpretation for the

two cases.

A broad lesson that emerges from our results is that it is absolutely crucial to understand the

nature of profits. If profits, or a fraction thereof are pure rents (e.g., from a natural monopoly)

taxing capital income may be optimal. If, however, profits are quasi-rents — the case that arises

in virtually any environment with sunk entry costs — then taxing capital income is suboptimal in

the long-run

The remainder of the paper is organized as follows. The next section describes the model.

Section 3 discusses the efficiency properties of the model, and Section 4 lays out the Ramsey

problem. Section 5 presents our main results, derived analytically, and a brief discussion linking

our results to existing literature. Section 6 provides a quantitative assessment of the optimal capital

tax in a calibrated version of our economy. Section 7 concludes.

2 The Economy

The economy is populated by a continuum of identical, infinitely-lived households, a continuum

of identical firms, and a government. There is no uncertainty. Each household is comprised of

a continuum of individuals who discount the future at rate β and have preferences u(ct, nt) over

consumption ct and leisure 1−nt. The household makes all intertemporal decisions for its members

by allocating after-tax labor income and after-tax capital income to consumption, new investment

in physical capital and a full set of state-contingent government bonds. Firms, in turn, operate a

constant-returns-to-scale (CRTS) technology f(kt, nt) to produce a homogenous good with physical

capital kt and labor nt.

Both the goods and the labor market are frictionless, as in the neoclassical one-sector growth

model. The market for physical capital, by contrast, is subject to allocation frictions. Following

Kurmann and Petrosky-Nadeau (2008, KP henceforth), we posit that the exchange of physical

5



capital from households to firms requires time and resources in order to find a trading partner. Once

matched, it is thus costly for both a household and a firm to abandon an ongoing capital-market

relationship. This match specificity gives rise to economic rents that households and firms split.

These shared rents distinguish our model’s capital allocation friction from other types of reduced-

form capital-market common in macroeconomic models, such as time-to-build lags or investment

adjustment costs.

Capital allocation and production occurs in two phases. In the first phase, firms (i.e., capital

demanders) open new projects at flow cost γ per project in an effort to attract available capital.

Households (i.e. capital suppliers) make available liquid capital in an effort to place with a firm

that has an open project some of its resources that will not be spent in the current period. Let

V denote the total number of new projects posted by all firms in the current period, and L the

total number of liquid units of capital. Assuming that capital suppliers do not direct their capital

towards any particular (group of) firms, let θ = V
L denote capital market tightness, and total

additions to the capital stock are governed by a matching process m(V,L)̇ ≤ min(V,L). Each firm

and household considers the aggregates V and L, and thus also θ, as exogenous when making its

decisions. Following most of the random matching literature, we assume that m(V,L)̇ is CRTS

and strictly concave in its arguments. Accordingly, each project matches with a unit of liquid

capital with probability p(θ) = m(V,L)
V , and each unit of liquid capital matches with a project with

probability q(θ) = m(V,L)
L : CRTS implies p(θ)θ = q(θ). Moreover, it will be useful to define the

elasticity of the aggregate number of matches with respect to liquid capital as ∂m(V,L)
∂L

L
m(V,L) =

−p′(θ)θ
p(θ) = ε(θ) and the elasticity of the aggregate number of matches with respect to projects as

∂m(V,L)
∂V

V
m(V,L) = q′(θ)θ

q(θ) = 1− ε(θ).
In the second phase, projects with matched capital become productive and, together with the

existing capital stock, yield output. After production has taken place, some exogenous fraction

s of the capital stock separates from the firm. The separated capital is returned to the supplier

net of depreciation; that is, households recover (1 − δ)skt of their matched capital at the end of

each period for consumption or reconversion into new liquid capital. Non-separated capital net of

depreciation (1−δ)(1−s)k remains matched with the firm for production in the next period. Finally,

unmatched capital units remain idle (without any return) in the hands of the capital suppliers and

are available for consumption, investment in government bonds, or redeployment as liquid capital

in the following period. Given these assumptions, from the perspective of the representative firm

that takes matching probabilities as given, the evolution of its productive capital stock is described

by

kt+1 = (1− δ)(1− s)kt + p(θt)vt, (1)

where vt denotes the firm’s project postings. From the perspective of the representative household,
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the same evolution of matched capital takes is perceived as

kt+1 = (1− δ)(1− s)kt + q(θt)lt, (2)

where lt denotes the number of liquid capital units available supplied to the matching market.

Finally, from the perspective of the household, the evolution of idle capital is

ut+1 = [1− q(θt)]lt, (3)

where ut+1 denotes the number of previously-unmatched capital units with which the household

enters period t+1. The temporal distinction between kt+1 and ut+1 on the one hand, and kt, vt, lt,

and θt on the other, emphasizes the two phases of capital allocation and production: investment in

new projects, the provision of liquid capital, and matching between new projects and liquid capital

must occur before production occurs.

2.1 Households

The representative household enters period zero with a pre-existing stock of matched capital k0 and

unmatched capital u0. Taking as given the stream of real wages {wt}∞t=0 and rental rates for physical

capital {rt}∞t=0, the household maximizes discounted lifetime utility by choosing state-contingent

processes for consumption, labor, liquid capital provision, productive capital provision, and state-

contingent government bonds {ct, nt, lt, kt+1, bt}∞t=0. The constraints on household maximization

are the sequence of perceived laws of motion of the household’s capital stock (2) and the sequence

of budget constraints that state that, in any period, outlays for consumption, liquid capital, and

government bonds cannot exceed revenues from after-tax labor income, after-tax returns from

investment in capital, government bonds, and dividends from firms.1

Formally, the household’s problem is

max
{ct,nt,lt,kt+1,bt}

∞∑
t=0

βtu(ct, nt) (4)

subject to the infinite sequence of flow budget constraints

ct + lt + bt = (1− τnt )wtnt + (1− τkt )rtkt + τkt δkt

+(1− δ)skt + (1− q(θt−1))lt−1 +Rt−1bt−1 + dt (5)

and the sequence of capital accumulation constraints (2). Denote by V (k0, u0) the maximized value

of this problem. In the budget constraint (5), wt denotes the pre-tax real wage rate, rt denotes the
1We assume implicitly that households send out each capital supplier with one unit of liquid capital; each of the

family members takes as given the actions of every other family member. Thus, we abstract from any coalition-

building in the setting of rental rates with capital demanders. This “small-capital-supplier” assumption means that

the rental rate is viewed as exogenous at the stage of household optimization.
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pre-tax real rental rate of capital, dt denotes dividends received in lump-sum manner from firms,

and Rt−1 denotes the state-contingent gross return on one-period real government securities held

between t− 1 and t. The labor income tax rate is τnt , and the capital-income tax rate is τkt . Note

that, as is standard in models of capital taxation, we allow for a capital depreciation allowance,

captured by the term τkt δkt. We rule out taxation of dividend receipts because that would akin to

a lump-sum tax.

Using the sequence of Lagrange multipliers {λt}∞t=0 and
{
µht

}∞
t=0

for the sequence of budget con-

straints and capital accumulation constraints, respectively, the first-order conditions with respect

to ct, nt, bt, kt+1, and lt are

uct − λt = 0, (6)

unt + λt(1− τnt )wt = 0, (7)

−λt + βλt+1Rt = 0, (8)

−µht + β
[
λt+1

(
(1− τkt+1)rt+1 + τkt+1δ + (1− δ)s

)
+ (1− δ)(1− s)µht+1

]
= 0, (9)

and

−λt + µht q(θt) + β [λt+1(1− q(θt))] = 0. (10)

Conditions (6) through (8) are standard. Condition (9) states that the marginal value of a matched

unit of capital equals its return net of taxes next period plus its contination value. Condition (10),

finally, is a no-arbitrage condition, which states that the marginal value of consumption is equal to

the expected discounted marginal value of investing in liquid capital.

Combining (9) and (10) to eliminate µht and using (6), we obtain

uct − (1− q(θt))βuct+1

q(θt)
= β

{
uct+1

(
(1− τkt+1)rt+1 + τkt+1δ + (1− δ)s

)
+

(1−δ)(1−s)[uct+1−(1−q(θt+1))βuct+2]
q(θt+1)

}
. (11)

We call this equation the capital-supply schedule because it describes the intertemporal link between

the household’s opportunity cost of saving and the return from setting aside a unit of resources

as capital. In fact, for s = 1 (all capital is free to be reallocated every period) and q(.) = 1 ∀t
(every unit of capital offered for sale will be put to use with probability one), we recover the familiar

capital-supply schedule of the one-sector growth model uct = βEt
[
uct+1

(
1 + (1− τkt+1)(rt+1 − δ)

)]
.

The first-order condition with respect to state-contingent bond holdings gives rise to, when

coupled with (6), the standard bond-Euler equation

uct = βuct+1Rt. (12)

Finally, because both goods markets and labor markets are frictionless, (6) and (7) imply a standard

consumption-leisure optimality condition,

−unt
uct

= (1− τnt )wt. (13)
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2.2 Firms

The representative firm begins period zero with matched capital k0. Taking both the sequence of real

wages {wt}∞t=0 and the sequence of rental rates {rt}∞t=0 as given, the firm choses a state-contingent

sequence of labor, project postings, and future capital stocks {nt, vt, kt+1}∞t=0 to maximize the

discounted present value of its flow profits, taking into account that its perceived law of motion

for its capital stock, (1).2 At the end of each period, firms rebate that period’s flow profits to

shareholders. Period-t flow profits are given by

dt = f(kt, nt)− wtnt − rtkt − γvt. (14)

Because households own a perfectly diversified portfolio of claims to firms’ shares, the relevant

discount factor for the firm is βtuct/uc0 =
t−1∏
i=0

R−1
i , by (12). Formally, the firm’s problem is thus

max
{nt,vt,kt+1}

∞∑
t=0

t−1∏
i=0

R−1
i [f(kt, nt)− wtnt − rtkt − γvt] (15)

subject to the sequence of constraints (1). Denote by J(k0) the maximized value of this problem.

Attaching the sequence of multipliers
{
µft

}∞
t=0

to the sequence of constraints, the resulting first-

order conditions are

wt = fn(kt, nt), (16)
t−1∏
i=0

R−1
i γ = µft p(θt), (17)

and

µft =
t∏
i=0

R−1
i [fk(kt+1, nt+1)− rt+1] + µft+1(1− δ)(1− s). (18)

Eliminating µft between (17) and (18) gives

γ

p(θt)
= R−1

t

[
fk(kt+1, nt+1)− rt+1 +

(1− δ)(1− s)γ
p(θt+1)

]
, (19)

which is the model’s capital demand schedule. This condition states that the expected posting

cost of successfully attracting a matched unit of capital equals the discounted marginal product of

matched capital net of rental costs plus the expected continuation value in case the match survives

exogenous separation.

As with the capital-supply schedule (11), we recover the simple static capital-demand equation

fk(kt, nt) = rt from (19) by setting s = 1 (all capital is free to be reallocated every period) and
2The assumption that firms take the rental rate as given is acceptable here because of constant-returns in the

production technology coupled with competitive labor markets; this makes holdup problems irrelevant despite the

capital-allocation friction. See Kurmann and Petrosky-Nadeau (2008) for further details.
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γ = 0 (capital does not have to be “attracted” to a particular location), which in turn yields

p(.) = 1 ∀t (every unit of capital demanded will be obtained with probability one because firms

post an infinity of project). If this were the case, Euler’s theorem would imply zero flow profits

because f(k, n) is CRTS.

Our model with capital allocation frictions thus distinguishes itself from the neoclassical one-

sector growth model in two crucial aspects: first, the inherent dynamic nature of the firm’s optimal

capital decisions; and second, the existence of flow profits despite a production technology that

is CRTS in capital and labor. These flow profits are essential for the operation of the economy

in that they compensate the firm for the fixed up-front project posting cost. This can be nicely

illustrated by combining the discounted sum of the firm’s flow profits from t = 1 onward with the

law of motion of the capital stock and the first-order conditions (16)-(18):3

∞∑
t=1

t−1∏
i=0

R−1
i dt =

∞∑
t=1

t−1∏
i=0

R−1
i [f(kt, nt)− wtnt − rtkt − γvt]

=
∞∑
t=0

µft+1p(θt+1)
γ

[fk(kt+1, nt+1)− rt+1]kt+1 −
∞∑
t=0

µft+1p(θt+1)vt+1

=
∞∑
t=0

[
µft − µ

f
t+1(1− δ)(1− s)

]
kt+1 −

∞∑
t=0

µft+1p(θt+1)vt+1

=
∞∑
t=0

µft [(1− δ)(1− s)kt + p(θt)vt]−
∞∑
t=0

µft+1[(1− δ)(1− s)kt+1 + p(θt+1)vt+1]

= µf0 [(1− δ)(1− s)k0 + p(θ0)v0] =
γ

p(θ0)
k1;

or, equivalently,

γ

p(θ0)
=

∑∞
t=1

t−1∏
i=0

R−1
i dt

k1
. (20)

This condition states that the period-0 expected cost of obtaining a matched unit of capital must

be exactly equal to the discounted present value of flow profits per unit of capital from period 1

onwards. Hence, profits are essential for the economy because they induce firms to enter the market

for capital by opening projects; it is only after the capital allocation process can production occur.

2.3 Rental Rate Determination

It remains to specify how the rental payment rt is determined. Because it is familiar in the Pissarides

class of models, we start with a scheme that has a Nash bargaining foundation, even though we

recognize that bargaining may not be the most palatable assumption for price determination in

asset markets. As Appendix E shows, however, the main results of the paper remain unchanged

with respect to alternative bargaining arrangements and competitive pricing schemes.
3This derivation is analogous to Domeji’s (2005) derivation in a model with labor matching frictions.
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Denoting by φ ∈ (0, 1) the share of a capital-match surplus accruing to capital suppliers (house-

holds) and by 1 − φ the share accruing to capital demanders (firms), the Nash bargained rental

rate solves the following problem

max
rt

(
Vk(kt, ut)− Vu(kt, ut)

λt

)φ
Jk(kt)1−φ. (21)

The term (Vk(kt, ut)−Vu(kt, ut))/λt is the household’s marginal value of a matched unit of capital,

measured in units of numeraire (the consumption good), net of the marginal value in case the unit

remains unmatched. The term Jk(kt) is the firm’s marginal value of a matched unit of capital.

As was defined above, the functions V (kt, ut) and J(kt) represent, respectively, the value of the

optimal plan for households and firms at the start of period t. We show in Appendix A that the

resulting rental rate is

rt = φfk(kt, nt) + (1− φ)δ + φ

[
(τkt+1 − τkt ) + q(θt)(1− τkt+1)

(1− τkt )
(1− δ)(1− s) γ

p(θt)

]
. (22)

Two distinct forces are at work on the bargained rental-rate: one that reflects standard static

components of a Nash-bargaining outcome, and one that is a consequence of dynamic policy-setting.

The first part of (22) shows that a firm’s gain from a successful capital placement, fk(kt, nt), and the

household’s opportunity cost of not placing a unit of capital in the match, underpins the rental rate.

These components are from standard Nash bargaining theory. A continuation value component of

the bargained price is also standard in Nash bargaining, but, as (22) shows, changes in the capital-

income tax rate affect this component of the time-t rental rate in our model.4 This type of dynamic

effect of taxation on Nash-bargained prices was first pointed out by Arseneau and Chugh (2006).

2.4 Government

The government faces an exogenous, stochastic stream of government spending {gt}∞t=0 that must

be financed out of the sequence of flow budget constraints

τnt wtnt + τkt (rt − δ)kt + bt = gt +Rt−1bt−1. (23)

The government’s sources of financing are proportional taxation of labor income, proportional

taxation of (productive) capital income, and state-contingent debt issuance.

2.5 Aggregation

Because the production technology is CRTS, the capital demand equation (19) and the rental rate

(22) depend on kt/nt and not on kt and nt independently. Firm size is therefore irrelevant and
4Note that if τkt+1 = τkt , the term in brackets in (22) would collapse to φq(θt)(1−δ)(1−s)γθt, which is the standard

(i.e., no-taxation) Nash-bargaining outcome.
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aggregate variables are identical to firm-level variables; i.e. Lt = lt and Vt = vt. The law of motion

for the aggregate capital stock is therefore

kt+1 = (1− δ)(1− s)kt +m(lt, vt), (24)

where m(lt, vt) now describes aggregate net investment. Furthermore, the economy-wide resource

constraint can be derived by combining the household’s budget constraint (5) with the definition

of flow profits (14) and the government’s budget constraint (23), which gives

f(kt, nt) = ct + gt + [lt + γvt]− [(1− δ)skt + (lt−1 −m(lt−1, vt−1))] . (25)

2.6 Private-Sector Equilibrium

A private-sector symmetric equilibrium is, for a given government policy {bt, gt, τnt , τkt }∞t=0, a state-

contingent sequence of feasible allocations {ct, nt, kt+1, lt, vt, θt}∞t=0 and a price system {Rt, rt, wt}∞t=0,

that satisfies the household’s budget constraint (5), the capital-supply condition (11), the labor-

supply condition (13), the labor-demand condition (16), the capital-demand condition (19), the

Nash bargained rental rate (22), the evolution of the aggregate capital stock (24), the resource

constraint (25), and the definition of capital market tightness θt = vt/lt.

The ensuing optimal taxation analysis is concerned with steady state allocations where xt = x,

∀t for any variable of the model. For this case, the following proposition holds.

Proposition 1. There exists a unique steady-state equilibrium characterized by the following capital

market tightness:
1
θE

=
γ

1− β
φ

1− φ
(1− τk). (26)

This value of θE, in turn, pins down a unique capital-labor ratio (k/n)E.

PROOF: See Appendix B.

3 Intertemporal Efficiency

To understand the optimal tax results that emerge from the Ramsey problem, it is useful to first

discuss the conditions that characterize the constrained efficient, or first-best steady state allocation

{c, n, k, l, v, θ} a social planner would choose in the absence of distortionary taxation. Our notion of

constrained efficiency is one that takes the matching process for physical capital as a technology of

the economy. To facilitate the analysis of efficiency, we develop a general notion of the intertemporal

marginal rate of transformation for our search-theoretic model of the capital market.
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The social planner’s problem is described by

max
{ct,nt,vt,lt,kt+1}

∞∑
t=0

βtu(ct, nt) (27)

subject to the sequence of capital accumulation constraints (24) and resource constraints (25).

Rather than deriving the full solution of this problem, we focus on intertemporal efficiency for

capital accumulation, as summarized by the following proposition.

Proposition 2. There exists a unique constrained-efficient (first-best) steady state equilibrium

characterized by the following equation for capital market tightness

1
θ1st

=
γ

1− β
ε(θ1st)

1− ε(θ1st)
. (28)

The value of θ1st, in turn, pins down a unique capital-labor ratio (k/n)1st.

The formal proof of this proposition is detailed in Kurmann (2008). Here, we simply provide

intuition by reconstructing condition (28) from the basic tenet that under intertemporal efficiency,

the intertemporal marginal rate of substitution (IMRS) must equal the intertemporal marginal rate

of transformation (IMRT). The IMRS in our model is straightforward, and standard, to define. It

measures how many consumption goods in t a household is willing to give up in order to obtain one

more unit of consumption in t + 1 while remaining on the same intertemporal indifference curve.

Given the subjective discount factor β, we have that this IMRS is measured, as in any standard

intertemporal model, by uct/βuct+1.5 In steady state, uct+1 = uct = uc, and thus

IMRS =
1
β
. (29)

Constructing the IMRT is more involved due to the capital allocation friction. Consider the

capital accumulation constraint (24) and the economy’s resource constraint (25). There are two

ways the economy can transform a unit of consumption in period t into a unit of consumption in

period t+ 1. We thus trace the IMRT in these two possible ways, and then connect them.

One way for the economy to achieve transformation of ct into ct+1 is to first trade off one unit

of ct for one unit of liquid capital lt. The extra unit of lt increases the number of aggregate capital

matches by ∂m(lt, vt)/∂lt ≡ mlt, which in turn increases output (and hence increases consumption)

in future periods by [(fkt+1 + (1− δ)s) + (1− δ)(1− s) (fkt+2 + (1− δ)s) + ...]mlt. In steady state,

this increase in production is equal to [fk + (1 − δ)s]/[1 − (1 − δ)(1 − s)]. At the same time, a

one-unit increase in lt affects the amount of unmatched capital carried forward into period t + 1

by (1−mlt), which, all else equal, would decrease ct+1. Transforming one unit of ct into one unit

of lt thus yields

IMRT = ml

(
fk + (1− δ)s

1− (1− δ)(1− s)

)
+ (1−ml) (30)

5More formally, we have along an indifference curve that − dct+1
dct

= MUt(ct)
MUt(ct+1)

= uct
uct+1

.
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extra units of ct+1 in steady state.

Alternatively, the economy can achieve transformation of ct into ct+1 by first trading off one

unit of ct for project postings vt; doing so yields 1/γ additional project postings, as (25) shows.

As a consequence, the aggregate number of capital matches increases by (∂m(lt, vt)/∂vt) (1/γ) ≡
mvt /γ, which in turn increases production in future periods by [(fkt+1 + (1− δ)s) + (1 − δ)(1 −
s) (fkt+2 + (1− δ)s) + ...] ∗ mvt/γ. In steady state, this increase in production is equal to [fk +

(1 − δ)s]/[1 − (1 − δ)(1 − s)] ∗mv/γ. Attendant with the rise in matched capital is a decrease in

unmatched capital by −mvt/γ units. In steady state, the total effect of transforming one unit of ct

into 1/γ units of vt is that

IMRT =
mv

(
fk+(1−δ)s

1−(1−δ)(1−s)

)
−mv

γ
(31)

extra units of ct+1 can be consumed.

For the economy to be on its production possibilities frontier, the two ways of transforming

consumption intertemporally must be equivalent. This is satisfied if
(

fk+(1−δ)s
1−(1−δ)(1−s)

)
= mv+(1−ml)γ

mv−γml
and thus we can collapse the two alternative representations of IMRT into just one,

IMRT = ml

(
mv + (1−ml)γ
mv − γml

)
+ (1−ml)1 =

mv

mv − γml

=
1− ε(θ)

1− ε(θ)[1 + γθ]
.

The second line uses the fact that mv/ml = (1−ε(θ))/(θε(θ)) by definition of the matching function.

This conceptualization of the IMRT is novel. It compactly describes the two technologies — the

matching technology m(.) and the production technology f(.) — that must operate for consumption

to be transformed across time. As we discuss below, this IMRT is crucial for understanding our

results. More broadly, as search-theoretic frameworks become increasingly popular in dynamic

general equilibrium models, it is useful to be able to describe transformation frontiers and the

MRTs implied by them in general ways.6 Notice that our notion of the IMRT encompasses that in

a standard RBC model. As we noted above, one can recover a simple neoclassical capital market

by assuming project costs are zero (γ = 0) (in which case, because they are costless, the number of

vacancies posted is infinite), and all capital is “returned to households” at the end of every period

(s = 1). With an infinity of project postings, ml = 1 and mv = 0. Imposing these assumptions and

results in the preceding logic, we obtain IMRT = fk + 1− δ, obviously identical to an RBC model.

Regardless of whether or not we are considering a neoclassical environment, intertemporal

efficiency naturally requires IMRS = IMRT . In our environment, we thus have

1
β

=
1− ε(θ)

1− ε(θ)[1 + γθ]
, (32)

6In a general-equilibrium labor -search framework, Arseneau and Chugh (2008b) develop an analogous search-based

notion of the MRT between consumption and leisure.
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which, after some rearrangement, is equivalent to (28). Comparing (28) with the private-sector

equilibrium solution in (26), we see that the (steady-state of the) decentralized economy achieves

intertemporal efficiency only in some special cases that are summarized by the following proposition.

Proposition 3. The private-sector equilibrium achieves intertemporal efficiency under the follow-

ing conditions:

1. φ = ε(θ) and τk = 0;

2. φ ≥ ε(θ) and τk = 1− 1−φ
1−ε(θ1st)

ε(θ1st)
φ .

The intuition for this proposition is straightforward. Consider condition (i). When φ = ε(θ1st),

the capital supplier’s share of the match surplus φ fully internalizes its relative contribution to the

market for physical capital allocation ε(θ1st) ≡ ml. This is equivalent to the well-known Hosios

(1990) efficiency condition for random matching models of the labor market.7 In this case, any tax

on capital will drive a wedge between the IMRS and the IMRT, thus leading to dynamic distortions

in capital accumulation.

Alternatively, consider condition (ii) and more particularly a situation where φ > ε(θ1st). In

this case, the capital supplier’s share of the match surplus exceeds its relative contribution, which

would, in the absence of capital taxes, lead to an excessive supply of liquid capital; i.e. θE < θSP .

Capital taxes can therefore be used to correct for this externality. Specifically, for φ > ε(θ1st), we

have τk = 1− 1−φ
1−ε(θ1st)

ε(θ1st)
φ > 0 such as to discourage the supply of liquid capital, thus restoring

intertemporal efficiency.8

In what follows, we focus exclusively on equilibria that satisfy the usual Hosios parameter

restriction φ = ε(θ1st). This case is interesting for two reasons. First, absent any proportional

taxation whatsoever, this case is equivalent to an alternative competitive search environment (as

in, say, Moen (1997), for the labor market) in which firms post rental rates in advance and where

capital suppliers can direct their capital towards a particular firm.9 Second, and more importantly

for our purposes, this case describes an economy where, in the absence of distortionary taxation,

positive flow profits can co-exist with a dynamically efficient capital stock. As the following analysis

shows, the existence of such flow profits provides the Ramsey planner with a powerful motive to

tax capital.
7Kurmann (2008) provides the formal analysis translating the Hosios (1990) efficiency condition to a search-

theoretic view of capital markets.
8Similar results on optimal taxation in the presence of externalities have been derived, for example, by Domeji

(2005) in the context of a model with labor search; or Bilbiie, Ghironi and Melitz (2007) in the context of a model

with monopolistic competition and endogenous entry.
9See Kurmann (2008) for a formal derivation. Appendix E sketches the competitive search environment and

provides robustness checks.
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4 Ramsey Problem

Given initial bond holdings b0, an initial matched capital stock k0, and an inital set of unmatched

capital units (1 − q−1)l−1, the government’s problem is to choose tax rates {τnt , τkt }∞t=0 so as to

maximize the economy’s welfare subject to the following constraints: (i) the resulting allocation

is supportable as a private-sector equilibrium as defined above; and (ii) the government’s budget

constraint is satisfied for an exogenous stream of expenditures {gt}∞t=0. Following Lucas and Stokey

(1983) and Chari and Kehoe (1999), we implement the Ramsey problem with the primal approach,

in which we cast the Ramsey government’s problem as one of choosing only allocations. As in

standard Ramsey models, we use the present-value household budget constraint with prices and

taxes substituted out using equilibrium conditions. Unlike in standard Ramsey models, however,

this present-value budget constraint does not capture (apart from the resource constraint) all of

the equilibrium conditions of the decentralized economy. In particular, we must separately impose

firms’ project-posting conditions, cast purely in terms of allocations, as a constraint on the Ramsey

problem. With the Ramsey allocation in hand, we then compute the optimal tax rates using the

private economy’s equilibrium conditions.

Proposition 4. Given initial states b0, k0, (1− q−1)l−1 and initial rental and capital tax rates r0

and τk0 , the private-sector equilibrium can be characterized by the evolution of the aggregate capital

stock (24), the resource constraint (25), the implementability constraint (IC)

∞∑
t=0

βt [uctct + untnt − uctdt] ≥ A0 (33)

with

A0 ≡ uc0 [R0b−1 + (1− q(θ−1))l−1] + Vk0k0,

and reformulated expressions for dividends and capital demand, respectively,

dt = (1− φ) [fk(kt, nt)− δ] kt − φ
[
1− [1− q(θt)]

(
1− β uct+1

uct

1− β uct
uct−1

)
θt−1

θt

]
(1− δ)(1− s) γ

p(θt)
kt − γθtlt,

(34)
γ

p(θt)
= β

uct+1

uct

[
dt+1 + γθt+1lt+1

kt+1
+ (1− δ)(1− s) γ

p(θt+1)

]
. (35)

PROOF: See appendix.

As discussed in Section 2, our model differs from the neoclassical one-sector growth model

in two crucial aspects, and both of these differences show up in the reformulated private-sector

equilibrium. First, initial asset wealth in the IC in (33) is augmented by the presence of dividends
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∑∞
t=0 β

tuctdt. These dividends, defined in (34), are rents that compensate firms for their ex-

ante project posting costs and are transferred lump-sum each period to the households who are

the ultimate shareholders. Second, the capital demand in (35) describes optimal project entry

and imposes an additional constraint: the expected posting costs per match equals the marginal

discounted returns from productive capital.

We formulate the Ramsey problem for two polar cases, depending on whether the government

considers rents from existing capital matches in the initial period as a taxable object or not. In

the first case, the government takes existing capital matches as given. It thus considers the flow

profits from these matches as pure rents whose present value is influenced by taxes. Accordingly,

we define this case as the pure-rent view.

Definition 1. The Ramsey problem under the pure-rent view is

max
{ct,nt,kt+1,θt,lt,dt}∞t=0

∞∑
t=0

βtu(ct, nt)

subject to the constraints of the private sector equilibrium (24)-(25) and (33)-(35), for a given

exogenous expenditure stream {gt}∞t=0 and initial conditions b0, k0, (1− q−1)l−1, r0, and τk0 .

As this formulation of the Ramsey problem makes clear, the government in terms of capital

accumulation is only concerned with entry of new projects; i.e. the discounted marginal value

of new matches from t = 0 onward. Whether the discounted average return from total capital

matches covers expected entry costs does not figure as a constraint because, as described above,

the government considers the flow profits from existing matches as pure rents that can be influenced

by tax policy.

The second, alternative case we consider is where the government does not take as given existing

capital matches in the initial period. Instead, the government realizes that all flow profits that the

firm receives are ultimately quasi rents that compensate for ex-ante project costs – as embodied

in condition (20). According to this long-term or quasi-rent view, the government takes (20) as an

explicit constraint in its optimization problem, which, allows us to rewrite the initial asset wealth

from dividends in the IC as

∞∑
t=0

βtuctdt = uc0d0 +
∞∑
t=1

βtuctdt = uc0d0 + uc0

∞∑
t=1

t−1∏
i=0

R−1
i dt

= uc0[(fk0 − r0)k0 − γv0] + uc0
γk1

p(θ0)

= uc0

[
fk0 − r0 + (1− δ)(1− s) γ

p(θ0)

]
k0

= uc0
γ

p(θ−1)
R−1.
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The inital asset wealth from dividends, or equivalently the discounted sum of total quasi-rents

from capital matches, is thus predetermined in the sense that the government restricts itself from

manipulating this wealth when setting tax policy. Integrating this result into the IC, we obtain the

following definition of the Ramsey problem under the quasi-rent view.10

Definition 2. The Ramsey problem under the quasi-rent view is

max
{ct,nt,kt+1,θt,lt}∞t=0

∞∑
t=0

βtu(ct, nt)

subject to the constraints

∞∑
t=0

βt [uctct + untnt] ≥ uc0
[
R0b−1 + (1− q(θ−1))l−1 + uc0

γ

p(θ−1)
R−1

]
+ Vk0k0 = A

′
0

,

f(kt, nt) + (1− δ)skt + (1− q(θt−1))lt−1 ≥ ct + gt + (1 + γθt)lt

(1− δ)(1− s)kt + q(θt)lt ≥ kt+1

,for a given exogenous expenditure stream {gt}∞t=0, and initial conditions b0, k0, (1 − q−1)l−1, r0,

and τk0 .

In short, the pure-rent and the quasi-rent view of the Ramsey problem are based on exactly

the same sequences of constraints imposed by the private-sector equilibrium. The only difference is

how the government considers flow profits from existing capital matches. As the optimal tax policy

results in the next section show, this difference has important implications.

As is standard in Ramsey taxation problems, we assume full commitment. Thus, we emphasize

that none of our results is driven by the use of a discretionary policy. Finally, throughout our anal-

ysis, we assume that the first-order conditions of the Ramsey problem are necessary and sufficient

and that all allocations are interior.

5 Optimal Tax Policy

We characterize the optimal tax policy for the two views presented in the previous section. We only

consider the limiting case for which the economy converges to a steady state. Numerical results for

a calibrated version of the pure-rent case are presented in Section 6.
10Since the same expression for

∑∞
t=0

βtuctdt is obtained with (34)-(35), the two constraints become redundant

and can be dropped from the private-sector equilibrium.
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5.1 Optimal tax policy under the pure-rent view

We first consider the Ramsey problem under the pure-rent view in Definition 1. We obtain the

following result.

Proposition 5. Under the pure-rent view in Definition 1, the Ramsey-optimal steady-state capital-

market tightness is
1
θ2nd

=
γ

1− β
ε(θ2nd)

1− ε(θ2nd)
+ wedge, (36)

with

wedge ≡ γ

1− β
1

[1− ε(θ2nd)]

(
−ε(θ2nd)

µrd

µrb
− 2ε(θ2nd)

µrp

µrb
1
k

+
µrd

µrb
∂d

∂θ2nd

)
.

The variables µrb, µrd, and µrp denote the steady state values of the Lagrangian multipliers for the

resource constraint (25), the definition of dividends (34), and capital demand (35), respectively.

Because the Lagrangian multipliers µrb, µrd, µrp are in general non-zero and the partial derivative

of flow profits with respect to capital market tightness ∂d/∂θ < 0, the optimal capital income tax

τk that implements this allocation is in general non-zero.

PROOF: See Appendix D.

To provide some intuition about this result, note that the government faces the following trade-

off. On the one hand, it wants to set liquid capital lt and project postings vt such as not the distort

the intertemporal margin; i.e., IMRS = IMRT . This is reflected in the fact that the first term on

the right-hand-side of (36) is identical to the first-best solution in (28) that implies a zero capital

income tax.

On the other hand, the government considers the dividends from existing matches as pure rents

that it would like to confiscate in order to reduce tax distortions; i.e. the lower initial asset wealth∑∞
t=0 β

tuctdt in the IC, the smaller the utility cost from distortionary taxes. Absent dividend

taxation, which is akin to lump-sum taxes that are by definition ruled out in Ramsey problems, the

government influences rents in (34) through lt and vt. This is reflected in the term wedge in (36).

Specifically, as long as physical capital and thus lt and vt are complements for rents, this wedge is

negative and thus, the optimal capital tax implied by comparison of (26) with (36) is positive.

The result stands in marked contrast to the canonical zero capital tax result in Chamley (1986)

and Judd (1985). The sole reason for this difference is the existence of rents in our model, which

occur as a natural consequence of ex-ante project costs that lead to frictions in the allocation of

physical capital. As these project costs go to zero (i.e. γ → 0), rents from capital matches disappear

and the optimal capital income tax returns to Chamley’s and Judd’s limiting case.
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5.2 Optimal tax policy under quasi-rent view

The optimal tax policy under the alternative quasi-rent view is quite different, as summarized in

the following proposition.

Proposition 6. Under the quasi-rent view in Definition 2, the Ramsey-optimal steady-state capital-

market tightness is characterized by

1
θ2nd′

=
γ

1− β
ε(θ2nd′)

1− ε(θ2nd′)
. (37)

The steady-state capital income tax that implements this allocation is τk = 0.

PROOF: See Appendix D.

Intuitively, the government under the quasi-rent view restricts itself from manipulating initial

asset wealth from dividends,
∑∞
t=0 β

tuctdt, because it realizes that they all represent quasi-rents

that compensate for previously incurred project costs. Doing so would distort match formation in

the capital market in the long run. As a result, the trade-off described above falls away. All the

government cares about is IMRS = IMRT , which is reflected by the fact that (36) is equivalent

to (28), and thus τk = 0. Similar to Chamley’s and Judd’s canonical case, the Ramsey problem

under the quasi-rent view thus attains the first-best solution along the intertemporal margin, and

all the distortions are concentrated on the intratemporal consumption-labor margin.

We turn now to a more in-depth discussion of the contrasting results under the quasi-rent case

and the pure-rent case.

5.3 Discussion

Rents always exist in our model. What drives the starkly different uses of capital-income taxation

as a way of taxing these rents is the view the Ramsey government adopts of their nature. In this

section, we interpret the different views and draw comparisons to the existing literature.

Consider first the pure-rent view, captured in Definition 1. As the government commits to the

optimal policy rule, it considers existing capital matches from successful search activity in the past

as a stock whose present value can be manipulated by tax policy. Here, the government is concerned

only about the subsequent flows in and out of the capital market — that is, about the formation of

new productive capital relationships that replace depreciation and exogenous break-ups of existing

matches that occur at rate s. Because the stock of existing capital matches is large compared

to the flow of new matches (i.e., investment), setting a positive capital-income tax only slightly

distorts the intertemporal margin, at the gain of being able to relax the distortion in the static

consumption-leisure margin.
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Consider now the quasi-rent view, captured in Definition 2. Even though the Ramsey govern-

ment faces an existing stock of capital matches at time zero when it commits to the optimal policy

rule, it understands that eventually all of these matches need to be replaced by new ones. In the

long-run, all capital matches are eventually subject to distortions that arise on the intertemporal

margin from taxing quasi-rents indirectly through the price of capital. The government therefore

restricts itself from manipulating the present value of flow profits from any capital match — a

policy that in the long-run is clearly superior to the optimal policy under the pure-rent view.

On a conceptual level, the positive capital tax result under the pure-rent view can be interpreted

through the lens of the uniform commodity taxation theorem well-known in the (static) theory on

optimal taxation. As described in, say, Stiglitz and Dasgupta (1971) or the monograph treatment

in Atkinson and Stiglitz (1980), if certain restrictions on preferences are satisfied and all sources

of factor income, including profit income, can be taxed, it is optimal to tax all consumption goods

at the same rate.11 In an intertemporal setting, taxing consumption goods across time uniformly

requires setting a zero tax rate on capital income. Otherwise, the real interest rate, which links

consumption prices at different dates, is distorted. In this sense, Chamley’s (1986) and Judd’s

(1985) zero-capital-tax result is an intertemporal application of the uniform commodity tax theorem

in an economy without profits. If, by contrast, the economy generates profits that cannot be taxed

at a 100-percent rate, then the optimality of uniform commodity taxation breaks down. In this

case, the government can use capital income taxes, through their distortion of the real interest rate,

to tax consumption in different time periods at a non-uniform rate.

This analogy with the uniform commodity taxation theorem has been pointed out in earlier

work by Jones, Manuelli, and Rossi (1997) and underlies much of the literature on Ramsey models

with incomplete factor taxation. For example, in both Correia (1996) and Jones, Manuelli, and

Rossi (1997), the government is restricted from taxing every factor of production at the rate of

choice. This generates rents for households that, if left untaxed, affect their behavior only through

an income effect.12 As long as capital is complementary to the untaxed factor(s) and thus to the

rents firms transfer to households, the government finds it optimal to depress these rents by taxing

capital-income so as to reduce the accumulation of capital. Armenter (2008) makes this point very

nicely in a recent paper, and the same mechanism is also at the heart of our positive capital taxation

result under the pure-rent view.
11The most germane of these preference restrictions is homotheticity in all consumption goods, an assumption

present in any macro model employing balanced-growth preferences.
12As Correia (1996) states, one can think of a model with incomplete factor taxation alternatively as a setting where

the production function exhibits decreasing returns to scale and where the thus generated profits are not taxed on

the household side. As mentioned above, a 100-percent tax on profits transferred to households is akin to a lump-sum

tax, which we generally rule out in the Ramsey approach.
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In contrast to the existing literature, however, our results do not stem from either arbitrary

restrictions about the available menu of tax instruments or an exogenous assumption of profit.

Rather, use of the capital tax achieves taxation of the profits that arise endogenously as the reward

to some type of activity to gain access to a market.13 Familiar examples are product marketing or

research and development activities, in which profits (or at least a limited time span in which to

earn them) are a necessary compensation for upfront sunk costs. Our model is of course simpler

than these real-life situations but we think our formalization of entry as a purposeful search decision

captures the same idea. Most importantly, rents in our model cannot be taxed away (other than

lump-sum) because this would rule out entry and thus production. The only way rents and thus

positive capital taxes disappear in our model is for the limiting case when project posting (i.e.

search) costs go to zero.

The explicit formalization of entry and the endogenous nature of rents also distinguishes our

analysis from studies on optimal taxation in the presence of monopolistic competition (e.g. Dixit-

Stiglitz goods differentiation). For example, Judd (1997, 2002) argues that monopoly frictions in

and of themselves call for negative capital taxes because the resulting markup in goods markets

leads to inefficiently low factor demand, including the demand for capital. Guo and Lansing (1999)

extend Judd’s analysis in a fully articulated macro public finance framework and show that the

existence of rents arising from monopoly power can reverse Judd’s negative capital tax result.14

The mechanism behind their result is exactly the same as in our model under the pure-rent view.

In sharp contrast to our analysis, however, there is no explicit entry decision in Guo and

Lansing’s (1999) economy, and profits are exogenously imposed by the Dixit-Stiglitz structure.

Hence, the concept of quasi-rents is absent. As suggested by Armenter’s (2008) general discussion

of incomplete factor taxation models, this absence of quasi-rents in and of itself does not prevent

the government from considering the present-value of flow profits as a predetermined variable that

cannot be manipulated by policy. However, in a setting without explicit entry and quasi-rents,

there is simply no meaningful way to understand why the government should tie its hands in that

way. Our analysis with explicit entry, by contrast, provides a clear economic rationale why the

pure-rent view is suboptimal and why, within the confines of our model, it is still a bad idea to tax

capital income.

More generally, our analysis affords two conclusions that, we believe, are new for the Ramsey
13Of course, we could add other distortionary taxes or subsidies to the capital market; for example a tax on entry

(i.e. project postings), a tax on corporate profits or an allowance for capital expenditures (e.g. Abel, 2007). While

this would affect some results about specific taxes, it would not change allocations for it is the effective tax rate on

the intertemporal margin that matters for private-sector decisions.
14In the context of monetary models featuring Dixit-Stiglitz monopoly power, Schmitt-Grohe and Uribe (2005) and

Chugh (2007) also can be interpreted as analyzing the Judd’s argument in a macro public-finance framework.
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taxation literature. First, even within the class of proportional taxation under full commitment,

a range of optimal tax policy concepts may apply. Second, for optimal tax policy, it is absolutely

crucial to understand the nature of profits. If profits or a fraction thereof are pure rents (e.g. from

a natural monopoly) taxing capital income may be optimal. If, however, profits are quasi-rents –

the case that arises in virtually any environment with sunk entry costs – then taxing capital income

is suboptimal.

6 Quantitative Results

In this section, we computationally solve for the steady-state Ramsey allocations in a calibrated

version of our economy in order to assess the quantitative significance of the optimal capital tax

under the pure-rent view. In computing the optimal policy under the pure-rent view, we also

assume the time-zero allocation is the same as the asymptotic steady-state Ramsey allocation, thus

endogenizing the initial condition of the economy.15 This assumption in and of itself does not affect

whether or not a zero capital-income tax is optimal in the steady-state.

6.1 Calibration

We assume the instantaneous utility function is

u(ct, nt) = ln ct +
ζ

1− ν
(1− nt)1−ν . (38)

The unit of time in the model is meant to be a quarter, so we set the subjective discount factor

to β = 0.99, yielding an annual real interest rate of about four percent. For the leisure subutility

function, we fix the parameter ζ such that the average fraction of hours worked equals n = 0.2

in the socially efficient allocation. Together with ν = 4, this results in a Frisch elasticity of labor

supply of 1. When solving for the Ramsey steady states under both the pure and quasi-rent view

of flow profits, we hold these values of ζ and ν, along with all other model parameters, constant.

For production, we assume a Cobb-Douglas function with constant returns to scale of the form

f(kt, nt) = kαt n
1−α
t . (39)

We set the share of capital in the production function to α = 0.3, and the rate of depreciation of

capital to δ = 0.025.

For the parameterization of the capital market, we follow Kurmann and Petrosky-Nadeau (2008)

who fit a very similar model to Compustat data. Based on their calculations, we set the quarterly

separation rate to s = 0.01. Together with δ = 0.025, this implies a ratio of total investment to
15Thus, we analyze policy not only under full commitment, but also under the “timeless” perspective.
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capital of 18 percent per year, and a ratio of used investment to total investment of 28 percent.

Both of these ratios are roughly in line with Compustat statistics reported by Ramey and Shapiro

(1998) and Eisfeldt and Rampini (2007), respectively.16 Furthermore, we fix ε = φ = 0.5, which

achieves the Hosios (1990) parameterization for search efficiency in the absence of taxation, and

set γ such that q(θ) = 0.25. In a business cycle context with productivity and separation shocks,

these parameter values generate the procyclical and volatile nature of used capital reallocation

that observed in the Compustat data. Finally, we choose steady-state government purchases ḡ so

that they constitute ten percent of total output, and the steady state value of government debt is

assumed to be zero, so that b = 0.

6.2 Quantitative Assessment of the Optimal Capital Tax

Results are presented in Table 1. The first row shows the constrained-efficient (first-best) alloca-

tions. Examining first the key macroeconomic ratios, the consumption to output ratio (c/y = 0.70)

is in line with data, but the ratio of the steady-state capital stock capital to output, k/y, is some-

what lower. We note, however, that capital in our model is not consistent with the way the capital

stock is calculated in the NIPA accounts, thus one might expect at least some difference. Equilib-

rium profits play a large role in our model, thus it is comforting to see that the ratio of dividends

to output, d/y, is quite low but comparable with that found in existing literature; see, for example,

Basu and Fernald (1997) or Rotemberg and Woodford (1995). Overall, our calibrated model seems

to replicate the key aggregate macroeconomic ratios observed in the data reasonably well.

As stated in Proposition 2, the unique value of market tightness, θ = 3 given our calibration,

pins down the socially-efficient capital-labor ratio, k/n = 18.759. These efficient values for capital-

market tightness and the capital-labor ratio serve as the benchmark against which to compare the

two alternative Ramsey equilibria.

The next two rows of Table 1 present allocations for the two alternative formulations of the

Ramsey problem presented in Section 4. If flow profits are treated as quasi-rents, we know from

Proposition 6 that the optimal capital tax is zero. The first column of the second row of Table 1

confirms this numerically. The Ramsey planner finances all government expenditure through the

use of the labor-income tax, setting τn to about 14 percent. Although the labor tax pushes labor

input below its socially-efficient level, efficiency in the capital market is achieved because θ = 3 and
16An annual investment-capital ratio of 17 percent may appear high compared to the empirical counterparts

obtained from the NIPA tables, which average around 10 percent annually. However, NIPA tables only measure

investment flows of new capital goods and then infer aggregate capital stocks as the sum of current and past investment

flows less depreciation. NIPA investment-capital ratios thus underestimate the true investment-capital ratio for two

reasons: first, because they do not take into account investment in used capital; and second, because the inferred

capital stocks do not take into account loss due to reallocation.

24



τk τn r θ k/n c n y k/y d/y Welfare

Social efficiency – – 0.037 0.333 18.759 0.343 0.200 0.486 7.785 0.003 –

Ramsey (quasi-rents) 0 0.136 0.037 0.333 18.759 0.317 0.188 0.453 7.785 0.003 -1.42

Ramsey (pure rents) 0.354 0.084 0.042 0.516 15.138 0.311 0.191 0.431 6.670 0.004 -4.76

Table 1: Steady state results. Welfare reported in the last column is the percentage additional consumption

the representative household requires in the given allocation to be just as well off as in the socially-efficient

steady-state allocation.

k/n = 18.759.

However, if flow profits are viewed as pure rents, Proposition 5 establishes that optimal capital

tax is non-zero. The third row of Table 1 shows that the optimal capital-income tax rate is about 35

percent. The second column of the table shows that the additional revenue raised from the capital

tax is used to finance a reduction in the proportional labor tax, hence labor input under the pure

rent view is a bit closer to its socially efficient level relative to the quasi-rent case. However, τk > 0

introduces an inefficiency into the capital market. We have that both capital-market tightness,

θ = 1.938, and the capital-to-labor ratio, k/n = 15.138, are lower than in the socially-efficient

allocation. Thus, in comparing the Ramsey equilibria in the pure- versus quasi-rent views, the

positive capital tax delivers efficiency gains in the labor market at the expense of distorting capital

accumulation.

The final column of the table shows the welfare loss of the Ramsey allocations relative to the

socially-efficient outcome. We measure welfare loss as the percentage additional consumption the

representative household requires in the Ramsey steady state to be just as well off as in the socially-

efficient allocation.17 The table shows that if flow profits are viewed as quasi-rents, the welfare cost

of the Ramsey allocations relative to the socially efficient allocations is 1.4 percent of steady state

consumption. The welfare cost associated with the Ramsey outcome in which flow profits are

viewed as pure rents, at near 5 percent, is much larger. The difference, of over 3 percent, thus

represents the steady-state welfare gain of switching from a Ramsey government that views profits

as pure rents to a Ramsey government that views profits as quasi-rents.
17We do not take into account transition costs, which could attenuate these comparisons. We leave this for future

research.
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7 Conclusion

We have investigated the extent to which entry decisions in capital markets affect long-run capital-

income tax prescriptions when the capital tax has the potential to tax profit flows. We found that

if the Ramsey government considers these profit flows as pure rents, it is optimal to set a positive

capital-income tax. In contrast, if the Ramsey government considers these profit flows as quasi-

rents — compensation for the upfront sunk costs of entry — a zero capital-income tax is optimal.

Our model thus nests in one environment two competing views of optimal capital taxation: the

Chamley-Judd zero-capital-tax view on the one hand, and the idea that capital taxes can and

should be used to tax profit flows on the others. The critical economic phenomenon linking these

two views is free-entry.

What distinguishes our model and results from these two branches of the existing literature is

that there is an economically meaningful way for a government to entertain the two possible views.

Our analysis shows that one treatment of profits — the quasi-rent view — is clearly welfare-superior

to the other. However, if a government did want to entertain a pure-rent view of profits, our model

articulates features of the economy that rationalize doing so. Though welfare-inferior, the pure-rent

view is not an ad-hoc view, but rather an alternative way of viewing the private-sector equilibrium.

More broadly, our results suggest that it is important to understand the nature of profits as well

as explicit entry considerations when designing capital-tax policy.
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A Nash Bargaining

The Nash-bargained rental rate solves the following problem

max
rt

(
Vk(kt, ut)− Vu(kt, ut)

λt

)φ
Jk(kt)1−φ,

where, by the envelope condition, the household’s marginal value of matched capital equals18

Vk(kt, ut) = λt
[
(1− τkt )rt + τkt δ + ϕ(1− δ)s

]
+ (1− δ)(1− s)βVk(kt+1, ut+1),

the household’s marginal value of unmatched capital equals

Vu(kt, ut) = λt,

and the firm’s marginal value of matched capital equals

Jk(kt) = fk(kt, nt)− rt + (1− δ)(1− s)R−1
t Jk(kt+1).

The first-order conditions of the Nash bargaining problem are

φ

(
Vk(kt, ut)− Vu(kt, ut)

λt

)φ−1

Jk(kt)1−φ 1
λt

(
∂Vk(kt, ut)

∂rt
− ∂Vu(kt, ut)

∂rt

)
+(1− φ)

(
Vk(kt, ut)− Vu(kt, ut)

λt

)φ
Jk(kt)−φ

∂Jk(kt)
∂rt

= 0.

Since ∂Vk(kt,ut)
∂rt

= λt(1− τkt ), ∂Vu(kt,ut)
∂rt

= 0 and ∂Jk(kt)
∂rt

= −1, this condition reduces to

φJk(kt) = (1− φ)

(
Vk(kt, ut)− Vu(kt, ut)

λt(1− τkt )

)
. (40)

Analogous to the analysis in a labor search environment by Arseneau and Chugh (2008a), taxes

drive a wedge into the standard Nash bargaining solution.

To derive an explicit solution for the rental rate, we start by defining St = Jk(kt)+
Vk(kt,ut)−Vu(kt,ut)

λt
,

which we interpret as the total surplus from the marginal capital match. Combining this definition

with the generalized bargaining formula in (40), we obtain

St =
(1− φ)
φ

(
Vk(kt, ut)− Vu(kt, ut)

λt(1− τkt )

)
+
Vk(kt, ut)− Vu(kt, ut)

λt(1− τkt )

φ(1− τkt )
(1− φ) + φ(1− τkt )

St =
Vk(kt, ut)− Vu(kt, ut)

λt
(41)

18Note that βVk(kt, ut) is, by definition equal to the multiplier µht−1; i.e. the value of a marginal unit of matched

capital in t from the view t− 1. Hence, this equation is equivalent to the household first-order condition with respect

to kt+1.
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Likewise,

St = Jk(kt) +
φ(1− τkt )
(1− φ)

Jk(kt)

(1− φ)
(1− φ) + φ(1− τkt )

St = Jk(kt) (42)

And using the definitions of µht and µft above, we express the surplus as

St = fk(kt, nt)− rt + (1− δ)(1− s)βR−1
t Jk(kt+1)

+
[
(1− τkt )rt + τkt δ + ϕ(1− δ)s

]
+ (1− δ)(1− s)βVk(kt+1, ut+1)

λt
− 1

= fk(kt, nt)− τkt (rt − δ) + ϕ(1− δ)s− 1

+(1− δ)(1− s)R−1
t

(
Jk(kt+1) +

Vk(kt+1, ut+1)− λt+1

λt+1

)
+(1− δ)(1− s)R−1

t .

where we used the household’s Euler equation with respect to bond holdings to express R−1
t =

βλt+1/λt. Now, we use (10) and rewrite it as19

R−1
t = 1− q(θt)R−1

t

(
Vk(kt+1, ut+1)− λt+1

λt+1

)
,

and from (41), we know that

Vk(kt+1, ut+1)− λt+1

λt+1
=

φ(1− τkt+1)
(1− φ) + φ(1− τkt+1)

St+1.

Hence, the surplus becomes

St = fk(kt, nt)− τkt (rt − δ) + ϕ(1− δ)s− 1

+(1− δ)(1− s)R−1
t St+1

+(1− δ)(1− s)
[
1− q(θt)R−1

t

(
φ(1− τkt+1)

(1− φ) + φ(1− τkt+1)
St+1

)]
= fk(kt, nt)− τkt (rt − δ) + ϕ(1− δ)s− 1 + (1− δ)(1− s)

(1− δ)(1− s)R−1
t

[
1− q(θt)

(
φ(1− τkt+1)

(1− φ) + φ(1− τkt+1)

)]
St+1

= fk(kt, nt)− τkt (rt − δ) + ϕ(1− δ)s− 1 + (1− δ)(1− s)

+(1− δ)(1− s)R−1
t

[
(1− φ) + (1− q(θt))φ(1− τkt+1)

(1− φ) + φ(1− τkt+1)
St+1

]
(43)

Next, consider the firm’s capital demand equation (19), which, by definition of Jk(kt) above

can be rewritten as
γ

p(θt)
= R−1

t Jk(kt+1).

19Again using fact that βVk(kt+1, ut+1) = µht .
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Using this condition together with (42), the surplus in (43) can be expressed as

St = fk(kt, nt)− τkt (rt − δ) + ϕ(1− δ)s− 1 + (1− δ)(1− s)

+(1− δ)(1− s)
(1− φ) + (1− q(θt))φ(1− τkt+1)

(1− φ)
γ

p(θt)

Likewise, we can combine the definition of Jk(kt) above with (19) and (42) to obtain

(1− φ)
(1− φ) + φ(1− τkt )

St = fk(kt, nt)− rt + (1− δ)(1− s) γ

p(θt)
.

Combining the two equations to substitute out for the surplus, we end up with

(1− φ)
[
fk(kt, nt)− τkt (rt − δ) + ϕ(1− δ)s− 1 + (1− δ)(1− s)

]
+(1− δ)(1− s)

[
(1− φ) + (1− q(θt))φ(1− τkt+1)

] γ

p(θt)

=
[
(1− φ) + φ(1− τkt )

] [
fk(kt, nt)− rt + (1− δ)(1− s) γ

p(θt)

]
which, after some rearrangement, yields[

(1− φ) + φ(1− τkt )− (1− φ)τkt
]
rt = φ(1− τkt )fk(kt, nt)

+φ
[
(1− τkt )− (1− q(θt))(1− τkt+1)

]
(1− δ)(1− s) γ

p(θt)

−(1− φ)
[
τkt δ + ϕ(1− δ)s− 1 + (1− δ)(1− s)

]
or equivalently

rt = φfk(kt, nt)

+φ

[
(τkt+1 − τkt ) + q(θt)(1− τkt+1)

(1− τkt )

]
(1− δ)(1− s) γ

p(θt)

+(1− φ)

[
δ +

(1− ϕ)(1− δ)s
(1− τkt )

]

Note that for τkt = τkt+1 = τk, this solution reduces to

rt = φfk(kt, nt)

+φ(1− δ)(1− s)γθt

+(1− φ)
[
δ +

(1− ϕ)(1− δ)s
(1− τk)

]
,

and for τk = 0, we recover exactly the rental rate equation in Kurmann and Petrosky-Nadeau

(2008)

rt = φ [fk(kt, nt) + (1− δ)(1− s)γθt]

+(1− φ) [δ + (1− ϕ)(1− δ)s] .
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B Steady-State Private-Sector Equilibrium

Consider equation (10) in steady state, rewritten as

λ = β [(1− q(θ)λ+ q(θ)Vk] ,

where we used again the fact that µh = βVk. We re-express this condition as

1− β = q(θ)β
(
Vk − λ
λ

)
.

But, from the Nash bargaining solution, we know that

φJk = (1− φ)
(

Vk − λ
λ(1− τk)

)
and thus, the above condition becomes

1− β =
φ(1− τk)

1− φ
q(θ)βJk.

Now, consider the firm’s capital demand equation (19), which, by definition of Jk above and the

fact that in steady state β = R−1, can be rewritten as

γ

p(θ)
= βJk.

Combining this express with the above equation to eliminate βJk yields

1− β =
φ(1− τk)

1− φ
γθ,

or equivalently

θ =
1− β
γ

1− φ
φ

1
1− τk

.

Hence, there exists a unique steady state value of capital market tightness, which completes the

first part of the proof of Proposition 1.

Once θ computed, we can derive the steady state equilibrium value of k/n by combining the

steady state expression for (19)

fk(k, n)− r =
γ

p(θ)
[R− (1− δ)(1− s)]

with the steady state expression of the rental rate equation (22)

r = φ [fk(k, n) + (1− δ)(1− s)γθ]

+(1− φ)
[
δ +

(1− ϕ)(1− δ)s
(1− τk)

]
,
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to eliminate r. We obtain

γ

p(θ)
[R− (1− δ)(1− s)] = (1− φ)

[
fk(k, n)− δ − (1− ϕ)(1− δ)s

(1− τk)

]
−φ(1− δ)(1− s)γθ,

which implicitly defines fk(k, n) and thus k/n as a function of θ. From there, it is straightforward

to use the remaining equations of the competitive equilibrium to find the steady state values of the

other variables.

In Figure 1, we plot key long-run endogenous variables as we exogenously vary the long-run

capital income tax rate, holding τn = 0 and assuming a lump-sum tax in the background. Thus,

the results in Figure 1 do not display Ramsey equilibria, but illustrate how variations in the capital-

income tax rate affect the private sector equilibrium in the long-run.
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Figure 1: Long-run effects of exogenous capital-income taxation when rental rate is determined by Nash

bargaining (τk plotted on horizontal axis).
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C Derivation of Implementability Constraint

Start as usual with the time-t flow budget constraint of the household. Multiply it by βtuct,

which represents the Ramsey planner’s perceived value of delivering a marginal unit of goods to

the representative household (technically, we are multiplying by βtλt, where λt is the household’s

multiplier on its budget constraint; in equilibrium, of course, λt = uct). Summing the resulting

flow budget constraint from t = 0 to infinity, we have
∞∑
t=0

βtuctct +
∞∑
t=0

βtuctlt +
∞∑
t=0

βtuctbt =
∞∑
t=0

βtuct(1− τnt )wtnt +
∞∑
t=0

βtuctdt

+
∞∑
t=0

βtuct
[
(1− τkt )rt + δτkt + ϕ(1− δ)s

]
kt +

∞∑
t=0

βtuct(1− q(θt−1))lt−1 +
∞∑
t=0

βtuctRtbt−1.

Note the absence of any expectations operators because in the end we focus only on deterministic

steady states. As usual, first substitute for the uct term in the third summation on the left-hand-side

using the bond Euler equation, uct = βRt+1uct+1. After this substitution, this summation cancels

with the analogous summation on the right-hand-side (the last term on the right-hand-side), leaving

only the marginal value of the time-zero bond position:
∞∑
t=0

βtuctct +
∞∑
t=0

βtuctlt =
∞∑
t=0

βtuct(1− τnt )wtnt +
∞∑
t=0

βtuctdt

+
∞∑
t=0

βtuct
[
(1− τkt )rt + δτkt + ϕ(1− δ)s

]
kt +

∞∑
t=0

βtuct(1− q(θt−1))lt−1 + uc0R0b−1.

Next, we use the optimal capital-supply condition to substitute for the uct term in the second

summation on the left-hand-side. Specifically, we use a compact representation of the capital-supply

condition, uct = q(θt)βVkt+1 +(1−q(θt))βuct+1, in which Vkt = uct
[
(1− τkt )rt + δτkt + ϕ(1− δ)s

]
+

β(1− δ)(1− s)Vkt+1 is the marginal value to the household, in utility terms, of a pre-existing unit

of physical (installed) capital at the beginning of period t (hence Vkt+1 represents this value at the

start of period t+ 1):

∞∑
t=0

βtuctct +
∞∑
t=0

βt+1q(θt)ltVkt+1 +
∞∑
t=0

βt+1uct+1(1− q(θt))lt =
∞∑
t=0

βtuct(1− τnt )wtnt +
∞∑
t=0

βtuctdt

+
∞∑
t=0

βtuct
[
(1− τkt )rt + δτkt + ϕ(1− δ)s

]
kt +

∞∑
t=0

βtuct(1− q(θt−1))lt−1 + uc0R0b−1.

The third summation on the left-hand-side cancels with the analogous summation on the right-

hand-side (the last summation on the right-hand-side), yielding

∞∑
t=0

βtuctct +
∞∑
t=0

βt+1q(θt)ltVkt+1 =
∞∑
t=0

βtuct(1− τnt )wtnt +
∞∑
t=0

βtuctdt

+
∞∑
t=0

βtuct
[
(1− τkt )rt + δτkt + ϕ(1− δ)s

]
kt + uc0 [R0b−1 + (1− q(θ−1))l−1] .
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Next, use the law of motion for the productive capital stock, q(θt)lt = kt+1 − (1 − δ)(1 − s)kt to

replace in the second summation on the left-hand-side:

∞∑
t=0

βtuctct +
∞∑
t=0

βt+1Vkt+1kt+1 −
∞∑
t=0

βt+1(1− δ)(1− s)Vkt+1kt =
∞∑
t=0

βtuct(1− τnt )wtnt +
∞∑
t=0

βtuctdt

+
∞∑
t=0

βtuct
[
(1− τkt )rt + δτkt + ϕ(1− δ)s

]
kt + uc0 [R0b−1 + (1− q(θ−1))l−1] .

Then, substitute for the Vkt+1 term in the second summation on the left-hand-side using the

envelope condition Vkt+1 = uct+1

[
(1− τkt+1)rt+1 + δτkt+1 + ϕ(1− δ)s

]
+ β(1− δ)(1− s)Vkt+2,

∞∑
t=0

βtuctct +
∞∑
t=0

βt+1uct+1

[
(1− τkt+1)rt+1 + δτkt+1 + ϕ(1− δ)s

]
kt+1 +

∞∑
t=0

βt+2(1− δ)(1− s)Vkt+2kt+1

−
∞∑
t=0

βt+1(1− δ)(1− s)Vkt+1kt =
∞∑
t=0

βtuct(1− τnt )wtnt +
∞∑
t=0

βtuctdt

+
∞∑
t=0

βtuct
[
(1− τkt )rt + δτkt + ϕ(1− δ)s

]
kt + uc0 [R0b−1 + (1− q(θ−1))l−1] .

Several terms now cancel: the second summation on the left-hand-side cancels with the third

summation on the right-hand-side, and the third summation on the left-hand-side cancels with the

fourth summation on the left-hand-side, which leaves

∞∑
t=0

βtuctct =
∞∑
t=0

βtuct(1− τnt )wtnt +
∞∑
t=0

βtuctdt

+ uc0
[
R0b−1 +

(
(1− τk0 )r0 + δτk + ϕ(1− δ)s

)
k0 + (1− q(θ−1))l−1

]
+ β(1− δ)(1− s)Vk1k0.

Finally, using the household’s consumption-leisure optimality condition, −unt = uct(1− τnt )wt, we

have the present-value implementability constraint

∞∑
t=0

βt [uctct + untnt − uctdt]

= uc0
[
R0b−1 +

(
(1− τk0 )r0 + δτk + ϕ(1− δ)s

)
k0 + (1− q(θ−1))l−1

]
+ β(1− δ)(1− s)Vk1k0

= uc0
[
R0b−1 +

(
(1− τk0 )r0 + δτk + ϕ(1− δ)s

)
k0 + (1− q(θ−1))l−1

]
+Vk0k0 − uc0

[
(1− τk0 )r0 + δτk0 + (1− δ)s

]
k0

= uc0 [R0b−1 + (1− q(θ−1))l−1] + Vk0k0

which is equation (33) in the main text.
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D Ramsey Planner Solution and Optimal Capital Taxation

Consider the reformulated Ramsey problem

max
{ct,nt,kt+1,θt,lt,dt}∞t=0

∞∑
t=0

βtu(ct, nt)

subject to
∞∑
t=0

βt [uctct + untnt − uctdt] ≥ A0

f(kt, nt) + (1− δ)skt + (1− q(θt−1))lt−1 ≥ ct + gt + (1 + γθt)lt

(1− δ)(1− s)kt + q(θt)lt ≥ kt+1

dt ≥ (1− φ) [fk(kt, nt)− δ] kt − φ
[
1− [1− q(θt)]

(
1− β uct+1

uct

1− β uct
uct−1

)
θt−1

θt

]
(1− δ)(1− s) γ

p(θt)
kt − γθtlt

β
uct+1

uct

[
dt+1 + γθt+1lt+1

kt+1
+ (1− δ)(1− s) γ

p(θt+1)

]
≥ γ

p(θt)

Defining V (ct, nt, dt,Φ) = u(ct, nt) + Φ [uctct + untnt − uctdt], the Lagrangian of this problem can

be formulated as

£ =
∞∑
t=0

βtV (ct, nt, dt,Φ)

+βtµrbt

 f(kt, nt) + (1− δ)skt + (1− q(θt−1))lt−1

−ct − gt − (1 + γθt)lt


+βtµrkt [(1− δ)(1− s)kt + q(θt)lt − kt+1]

+βtµrdt

 dt − (1− φ) [fk(kt, nt)− δ] kt

+φ
[
1− [1− q(θt)]

(
1−β uct+1

uct

1−β uct
uct−1

)
θt−1

θt

]
(1− δ)(1− s) γ

p(θt)
kt + γθtlt


+βtµrpt

[
β
uct+1

uct

[
dt+1 + γθt+1lt+1

kt+1
+ (1− δ)(1− s) γ

p(θt+1)

]
− γ

p(θt)

]
− ΦA0.

The idea of the proof is to use the first-order conditons for θt and lt and then to combine them

to obtain an expression for θ in steady state that can be compared to the steady state value of θ

for the private sector equilibrium. Consider the first-order conditons for θt and lt:

θt : −βµrbt+1q
′(θt)lt − µrbt γlt + µrkt q

′(θt)lt

+µrdt φ

[
q′(θt)

(
1− β uct+1

uct

1− β uct
uct−1

)
θt−1

θt

]
(1− δ)(1− s) γ

p(θt)
kt

−βµrdt+1φ

[
[1− q(θt+1)]

(
1− β uct+2

uct+1

1− β uct+1

uct

)
1
θt+1

]
(1− δ)(1− s) γ

p(θt+1)
kt+1

+µrdt φ

[
[1− q(θt)]

(
1− β uct+1

uct

1− β uct
uct−1

)
θt−1

θ2
t

]
(1− δ)(1− s) γ

p(θt)
kt
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−µrdt φ
[
1− [1− q(θt)]

(
1− β uct+1

uct

1− β uct
uct−1

)
θt−1

θt

]
(1− δ)(1− s)γp

′(θt)
p(θt)2

kt + µrdt γlt

+
µrpt−1

β
β
uct
uct−1

[
γlt
kt
− (1− δ)(1− s)γp

′(θt)
p(θt)2

]
+ µrpt

γp′(θt)
p(θt)2

= 0

and

lt : βµrbt+1(1− q(θt))− µrbt (1 + γθt) + µrkt q(θt) + µrdt γθt +
µrpt−1

β
β
uct
uct−1

γθt
kt

= 0

In steady state, these two conditions simplify considerably. Redefining µrk ≡ βRk (the discounted

marginal value of an additional unit of matched capital next period), the first FOC can be rewritten

as

θt : q′(θ)β
[
Rk − µrb

]
l =

[
µrb − µrd

]
γl

−µrdφ
[
q′(θ)− β(1− q(θ))

θ
+

(1− q(θ))
θ

− [1− (1− q(θ))]p
′(θ)
p(θ)

]
(1− δ)(1− s) γ

p(θ)
k

−µrp γl
k

+ µrp[(1− δ)(1− s)− 1]
γp′(θ)
p(θ)2

Likewise, the second FOC can be rewritten as

lt : β
[
q(θ)Rk + (1− q(θ))µrb

]
= µrb(1 + γθ) + µrdγθ − µrp γθ

k
(44)

It will turn out to be useful to rewrite the first FOC as

θt : q′(θ)β
[
Rk − µrb

]
=
[
µrb − µrd

]
γ + µrdγDθ + µrpγPθ (45)

with

Dθ = −φ
[
q′(θ)− β(1− q(θ))

θ
+

(1− q(θ))
θ

− [1− (1− q(θ))]p
′(θ)
p(θ)

]
(1− δ)(1− s) 1

p(θ)
k

l
< 0

and

Pθ = −1
k

+
[1− (1− δ)(1− s)]

l

p′(θ)
p(θ)2

= − [1− (1− δ)(1− s)]
q(θ)l

+
[1− (1− δ)(1− s)]

l

p′(θ)
p(θ)2

=
[1− (1− δ)(1− s)]

l

[
p′(θ)θ
p(θ)

1
q(θ)

− 1
q(θ)

]
=

[1− (1− δ)(1− s)]
l

[
−ε(θ) 1

q(θ)
− 1
q(θ)

]
=

1
k

[−ε(θ)− 1] < 0

It seems quite intuitive that these two terms are negative: an increase in θ = v/l decreases marginal

profits (Dθ < 0) and decreases the marginal match value for a firm (Pθ < 0). Now, divide both

sides of (45) by p(θ) = q(θ)/θ and rewrite the condition as

θ

q(θ)
q′(θ)β

[
Rk − µrb

]
=

µrbγ

p(θ)

[
1 +

µrd

µrb
(Dθ − 1) +

µrp

µrb
Pθ

]

[1− ε(θ)]β
[
Rk − µrb

]
=

µrbγ

p(θ)

[
1 +

µrd

µrb
(Dθ − 1) +

µrp

µrb
Pθ

]
(46)
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Likewise, rewrite (44) as

βq(θ)[Rk − µrb] = µrb(1− β) + µrbγθ

[
1 +

µrd

µrb
− µrp

µrb
1
k

]

β[Rk − µrb] =
µrb

q(θ)
(1− β) +

µrbγ

p(θ)

[
1 +

µrd

µrb
− µrp

µrb
1
k

]

Next, we use the first condition to substitute out for the term µrbγ
p(θ) in the second condition. We

obtain

β[Rk − µrb] =
µrb

q(θ)
(1− β) + [1− ε(θ)]β

[
Rk − µrb

] [
1 + µrd

µrb
− µrp

µrb
1
k

]
[
1 + µrd

µrb
(Dθ − 1) + µrp

µrb
Pθ
]

and after rearranging[
1 +

µrd

µrb
(Dθ − 1) +

µrp

µrb
Pθ

]
β[Rk − µrb] =

µrb

q(θ)
(1− β)

[
1 +

µrd

µrb
(Dθ − 1) +

µrp

µrb
Pθ

]

+[1− ε(θ)]β
[
Rk − µrb

] [
1 +

µrd

µrb
− µrp

µrb
1
k

]

ε(θ)β[Rk − µrb] + β
[
Rk − µrb

]{
[1− ε(θ)]

[
µrp

µrb
1
k
− µrd

µrb

]
+

[
µrd

µrb
(Dθ − 1) +

µrp

µrb
Pθ

]}

=
µrb

q(θ)
(1− β)

[
1 +

µrd

µrb
(Dθ − 1) +

µrp

µrb
Pθ

]

Finally, dividing this equation by (46) yields

ε(θ)
1− ε(θ)

+

{[
µrp

µrb
1
k
− µrd

µrb

]
+

1
[1− ε(θ)]

[
µrd

µrb
(Dθ − 1) +

µrp

µrb
Pθ

]}
=

p(θ)
γq(θ)

(1− β)

or as a solution of θ

1
θ

=
γ

1− β
ε(θ)

1− ε(θ)
+

γ

1− β

{[
µrp

µrb
1
k
− µrd

µrb

]
+

1
[1− ε(θ)]

[
µrd

µrb
(Dθ − 1) +

µrp

µrb
Pθ

]}
.

The first part 1
θ = γ

1−β
ε(θ)

1−ε(θ) is just the inverse of the IMRS=IMRT condition that would obtain in

the absence of distortionary taxation. Under the Hosios condition, this would imply a zero optimal

capital-income tax. The second part in curly brackets is a wedge due to distortionary taxation that

implies a non-zero optimal capital tax. Specifically, comparing this solution with the private-sector

equilibrium, rewritten as
1
θ

=
γ

1− β
φ

1− φ
(1− τk)

it is clear that for tk > 0, it needs to be the case that{[
µrp

µrb
1
k
− µrd

µrb

]
+

1
[1− ε(θ)]

[
µrd

µrb
(Dθ − 1) +

µrp

µrb
Pθ

]}
< 0
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To investigate whether this is true, rewrite this term as

1
[1− ε(θ)]

{
[1− ε(θ)]µ

rp

µrb
1
k
− [1− ε(θ)]µ

rd

µrb
+

[
µrd

µrb
(Dθ − 1) +

µrp

µrb
Pθ

]}

=
1

[1− ε(θ)]

{
−ε(θ)µ

rd

µrb
+ [1− ε(θ)]µ

rp

µrb
1
k

+

[
µrd

µrb
Dθ +

µrp

µrb
Pθ

]}

Inserting the above definition of Pθ, we obtain

1
[1− ε(θ)]

{
−ε(θ)µ

rd

µrb
− 2ε(θ)

µrp

µrb
1
k

+
µrd

µrb
Dθ

}
< 0

as long as the three lagrangian multipliers are positive (which, intuitively, seems to make sense...but

we should also be able to show this analytically).
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E Alternative Rental Rate Determination Mechanisms

E.1 Proportional Bargaining

As we show in Appendix A, the Nash-bargained rental rate in (22) satisfies

Vkt −Vut

1− τkt
=

φ

1− φ
Jkt, (47)

where Vkt−Vut is the surplus accruing to the household from moving the marginal unit of capital

from an unmatched state to a matched state, and Jkt is the surplus accruing to the firm of installing

a unit of capital. As shown in Arseneau and Chugh (2006, 2008a), proportional taxation in equilib-

rium changes parties’ bargaining powers. In our model, households’ bargaining power is effectively

reduced by 1 − τkt because they are the ones that are formally obliged to pay the capital income

tax. Because equilibrium splits of match surpluses take into account future equilibrium splits of

match surpluses under Nash bargaining, time-variation in tax rates leads to what Arseneau and

Chugh (2008a) identify as a dynamic bargaining power effect ; this is captured by the presence of

both τkt and τkt+1 in the determination of rt in the Nash condition (22).

An alternative axiomatic bargaining solution, proportional bargaining, does away with this dy-

namic bargaining power effect and instead makes taxes have only a static effect on the equilibrium.20

The proportional bargaining solution satisfies

Vkt −Vut =
φ

1− φ
Jkt; (48)

when we use the value equations defined in Appendix A, we get

rt
[
1− τkt (1− φ)

]
= φ [fk(kt, nt) + (1− δ)(1− s)γθt] + (1− φ)

[
(1− s)δ + s [1− ϕ(1− δ)]− τkt δ

]
,

(49)

which replaces (22). All other equilibrium conditions are identical to that in the baseline model.

The question of which bargaining environment is a “better” empirical description is outside the

scope of our analysis. We only mean to show that how capital taxes affect and are affected by capital

allocations frictions depends on the precise manner by which asset-market prices are determined;

this issue obviously cannot be asked in a simple Ramsey environment that assumes fundamentally

neoclassical capital markets.

For this bargaining mechanism, Figure 2 plots key long-run endogenous variables as we exoge-

nously vary the long-run capital income tax rate, holding τn = 0 and assuming a lump-sum tax in

the background. Just as in Figure 1, we are thus not plotting Ramsey equilibria here. The major

difference compared to Figure 1 is that under proportional bargaining, the capital tax does not at

all affect capital market tightness, hence does not affect matching probabilities.
20See Kalai (1977) as the original reference on proportional bargaining, and Aruoba, Rocheteau, and Waller (2007)

for a recent application to monetary economics.
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Figure 2: Long-run effects of exogenous capital-income taxation when rental rate is determined by propor-

tional bargaining (τk plotted on horizontal axis).
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E.2 Competitive Search

An alternative to bilateral bargaining altogether is a decentralized price-setting mechanism, com-

petitive search equilibrium, in which all capital suppliers and capital demanders take as given the

rental rate when making their search decisions. We follow Moen (1997) in how we implement a

competitive search equilibrium (CSE). More details also appear in Kurmann (2008).

In capital submarket j, the capital demand condition is

γ = p(θijt)Ξt+1|t

[
fk(kit+1, nit+1)− rijt+1 +

(1− δ)(1− s)γ
p(θjt+1)

]
, (50)

and the capital supply condition is

uct − (1− q(θijt))βuct+1

q(θijt)
= β

{
uct+1

(
(1− τkt+1)rijt+1 + τkt+1δ + (1− δ)s

)
+

(1− δ)(1− s) [uct+1 − (1− q(θjt+1))βuct+2]

q(θjt+1)

}
.

(51)

The CSE rental rate and market tightness (pijt, θijt) maximizes the value of a filled investment

project, taking as constraint the capital supply (directed search) condition. The period t+ 1 rental

rate is determined in period t. Formally, rijt+1 is the result of the following optimization problem:

max p(θijt)

[
f(kjt+1, njt+1)− rijt+1 +

(1− δ)(1− s)γ
p(θjt+1)

]
(52)

subject to

uct−(1−q(θijt))βuct+1 = q(θijt)β

{
uct+1

[
(1− τkt+1)rijt+1 + τkt+1δ + (1− δ)s

]
+

(1− δ)(1− s) [uct+1 − (1− q(θjt+1))βuct+2]

q(θjt+1)

}
.

(53)

Denoting by µt ≡ p(θijt)
q(θijt)

Ξt+1|t
β[uct+1(1−τkt+1)] , the CSE rental rate rijt is characterized by

p′(θijt)

[
f(kjt+1, njt+1)− rijt+1 +

(1− δ)(1− s)κ
p(θjt+1)

]
= (54)

µtq
′(θijt)βuct+1 − βuct+1

[
(1− τkt+1)rijt+1 + τkt+1δ + (1− δ)s

]
(55)

− β(1− δ)(1− s) [uct+1 − (1− q(θjt+1))βuct+2]
q(θjt+1)

.

A few details of the formal maximization problem are worth pointing out. First, the discount

factor Ξt+1|t does not appear in the objective (52). Second, we attach the multiplier βµt/uct+1

to the constraint (53): the subjective discount factor β appears as part of the multiplier because

determination of the rental rate occurs one period in advance, while the period-t + 1 marginal

utility of wealth appears because t + 1 is the period of valuation.21 With these details in mind,
21Technically, it is of course the multiplier on the household budget constraint that is the appropriate here; however,

in equilibrium, all of the details of which the Ramsey planner internalizes, the multiplier on the household budget

constraint equals the marginal utility of consumption.
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optimization is with respect to the rijt+1 and θijt. Following optimization, we impose symmetry

across firms and submarkets, and the rental rate is characterized by

p′(θt)κ
p(θt)

(56)

+ µtq
′(θt)β

{
(1− τkt+1)rt+1 + τkt+1δ + (1− δ)s+

(1− δ)(1− s) [uct+1 − (1− q(θt+1))βuct+2]
uct+1q(θt+1)

}
− βµtq

′(θt) = 0,

with the multiplier satisfying µt = p(θt)

q(θt)β(1−τkt+1)
. In the first term in (56), we used the project-

posting condition to simplify the first-order condition with respect to θijt+1. Furthermore, in the

second term, we can use the capital supply condition (53) to rewrite as

p′(θt)κ
p(θt)

+
µtq
′(θt)β
uct+1

uct − (1− q(θt))βuct+1

q(θt)
− βµtq′(θt) = 0. (57)
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Kurmann, André. 2008. “Holdups and Overinvestment in Physical Capital Markets.” UQÀM.
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