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1 Introduction

An enduring question in the theory of fiscal policy is that of the optimal long-run capital income

tax rate. In this paper, we study optimal capital income taxation when labor markets are subject

to search and matching frictions. Our main result is that the standard Chamely/Judd optimal

fiscal policy prescription of a zero capital tax rate in the long run does not, in general, carry over

to our environment with frictional labor markets. This result arises for two distinct reasons. First,

echoing a result previously reported by Domeij (2005), we show that a non-zero optimal capital tax

obtains if a well-known condition for efficient search and matching, the Hosios (1990) condition,

is not satisfied. In addition, we show that regardless of whether or not the Hosios condition is in

place, a non-zero capital tax obtains if labor force participation—that is, entry by individuals into

labor market activity—is inefficient. This later result is the primary contribution of our paper.

Intuitively, in either case the capital tax is used to correct the underlying labor market distortion

by indirectly influencing search activity of private agents in the labor market.

Most models examining policy issues in a general equilibrium setting with search and matching

frictions in the labor market assume a fixed participation rate. One justification for this assumption

is that fluctuations along the participation margin observed in the data are quite small. Further-

more, and perhaps more substantially, assuming a fixed participation margin helps the model deliver

a Beveridge curve—the empirically-observed negative cyclical relationship between job vacancies

and unemployment. In contrast, models that feature endogenously determined participation rates,

such as Shi and Wen (1999) and Domeij (2005), do not display a Beveridge Curve. They instead

counterfactually predict a positive cyclical relationship between job vacancies and unemployment.

It appears, then, that there may be good empirical reasons for assuming fixed participation.

The focus of our study here is not on short-run issues, but rather on the long-run capital income

tax, so while the Beveridge Curve does not play a direct role in our analysis, we nevertheless think

it useful to study long-run capital taxation in an environment that also has attractive short-run

properties. The Beveridge Curve is a short-run outcome with which virtually all labor-market

models aim to be consistent, and a fixed participation rate delivers this outcome. A given (fixed)

participation rate, however, is not likely to be the efficient participation rate. In light of this, one

of the key contributions of this paper is to show that there are first order policy implications that

can arise from imposing the fixed participation assumption.

We demonstrate our point by formulating a dynamic general equilibrium (DGE) labor-search

model in such a way that it nests both the fixed- as well as the efficient-participation framework in

a single model. We nest the two frameworks by defining a shadow value of adjustment along the

participation margin which, in turn, appears in several key equilibrium conditions of the model.

If participation is efficient, this shadow value is by construction zero; however, if participation is
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inefficient, as generically is the case for a fixed participation rate, we show that this shadow value

drives a wedge into the equilibrium of the labor market. We show analytically that the presence of

this wedge generates a non-zero optimal capital tax.

Intuitively, the capital tax is used by the Ramsey planner to alleviate the distortion generated

by inefficient participation by indirectly influencing the job creation decision of the firm. We present

quantitative evidence to demonstrate that when participation is inefficiently low, a capital tax can

be used to increase the firm’s incentive to create jobs. As firms post more vacancies it becomes

easier for searching individuals to find employment and the unemployment rate falls. With more

workers in the economy engaged in productive jobs, the total distortion to output resulting from

the inefficiently low participation rate is mitigated. Conversely, a capital subsidy can be used to

restrain job creation when labor force participation is inefficiently high. Ultimately, our results

stem from the fact that the Ramsey planner is assumed to have access to an incomplete set of tax

instruments and thus must the capital tax to indirectly influence outcomes in the labor market.1

Arseneau and Chugh (2008) show that the inflation tax can be used in a similar manor to influence

labor market outcomes in a DSGE labor search model with nominal wage rigidities.

A more closely related paper is Domeij (2005), which uses a labor search model with house-

holds that optimize over search activity to demonstrate that, provided the Hosios (1990) efficiency

condition is satisfied, the optimal capital income tax is zero in the long run. With the standard

assumptions in the literature of Cobb-Douglas matching and Nash bargaining as the wage-setting

protocol, Hosios (1990) showed that a simple parameter restriction in the decentralized economy

eliminates the market-tightness externality inherent in search environments, thus rendering the

labor market efficient.2 Because the Hosios condition is obtained in a model of only labor markets

and takes all other activity - in particular, participation decisions - as given, it can be interpreted

as a partial-equilibrium efficiency condition. Domeij’s (2005) result can thus be understood as

the partial equilibrium Hosios condition carrying over to a general equilibrium setting provided

participation is efficient. With the Hosios condition delivering labor-market efficiency for a given

participation rate and with participation, in turn, determined efficiently through optimal search
1In our baseline analysis, the missing instrument is one that directly encourages or discourages participation. See

Ljungqvist and Sargent (2004, p. 478) for discussion about using the capital tax as part of an incomplete tax system,

or also Correia (1996), Jones, Manuelli, and Rossi (1997), and Armenter (2008).
2The specific parameter restriction is that that the bargaining power of workers equals the elasticity of workers’

input into the aggregate matching process. In search environments, a market-tightness externality arises from the

fact that one additional job-seeker in the market increases the probability that a firm will match with a worker but

decreases the probability that job-seekers already in the market will match with a firm. Equivalently, the externality

can be thought of as arising from the fact that one additional firm with a vacancy increases the probability that a

job-seeker will match with a firm but decreases the probability that firms already in the market will match with a

job-seeker.
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behavior, there is no role for capital income taxation. Because Domeij (2005) is nested as a special

case of our modeling framework, we are able to replicate his finding analytically. We then extend

his analysis a more general setting with fixed participation and demonstrate analytically that non-

zero capital taxation is an even more general result. In particular, we show a non-zero capital tax

is optimal when participation is fixed, regardless of whether or not the Hosios condition is in place.

We use a quantitative version of our model to first numerically illustrate the zero capital tax

result when the household chooses labor force participation optimally and the Hosios condition

holds. We then use the model to show that, with participation determined optimally, deviations

from the Hosios condition result in a capital income tax rate that is small, ranging from -11 percent

to 11 percent. This numerical result mirrors Domeij (2005). In contrast, if participation is assumed

to be exogenous, as is the case in much of the DSGE labor search literature, the magnitude of

the capital tax (in an absolute sense) is much larger depending on how far above or below the

participation rate is from its efficient level. Furthermore, this is true regardless of whether or not

the Hosios condition is in place. Thus, even seemingly “small” inefficiencies in participation may

call for large capital-income taxes (or subsidies).

The rest of the paper is organized as follows. Section 2 lays out the model, in which we are

able to capture in nested form both an environment that does feature and an environment that

does not feature a labor force participation margin. In Section 3, we describe the social planning

solution in this environment and present a key efficiency result. Section 4 presents the Ramsey

problem. Section 5 proves the conditions under which a zero long-run capital tax is optimal.

Section 6 presents a parameterized version of the model to quantify the optimal capital tax when

participation is either inefficiently high or inefficiently low. Section 7 concludes.

2 Model

As many other recent studies have done, we embed the baseline Pissarides (2000) textbook search

model with capital into a deterministic dynamic general equilibrium (DGE) framework. The base-

line Pissarides (2000) framework features a fixed size of the labor force. The large majority of

the recent vintage of DGE models adopting a search-theoretic foundation for labor markets has

inherited this structure. As mentioned in the introduction, this structure preserves a Beveridge

Curve when studying short-run issues. A few DGE studies, on the other hand, have endogenized

the participation decision — for example, Shi and Wen (1999) and Domeij (2005). However, en-

dogenous participation, while perhaps attractive for some issues, is inconsistent with the existence

of a cyclical Beveridge Curve.3

3As noted in the introduction, a model displays a short-run Beveridge Curve if vacancies and unemployment move

in opposite directions over the business cycle. If participation is endogenous in a model, then the Beveridge relation
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To encompass both types of models found in the literature, we allow for both the possibility

that the number of individuals in the labor force (defined as individuals either working or actively

seeking employment) is fixed and one in which it is endogenous. Regardless of whether participation

is endogenous or exogenous, however, transitions into employment are always subject to search

and matching frictions in our model. We present these two versions of our search model in a

unified, nested way. Specifically, rather than construct essentially two different environments,

we construct one very general framework that seems like it “always” allows for an endogenous

participation decision but that, by imposing one particular constraint, can also allow for exogenous

participation. As described below, nesting the two environments in this way allows us to clearly

isolate the incentives relevant for optimal policy. These incentives turn out to be captured by the

shadow value of the constraint that allows us to move between the exogenous- and the endogenous-

participation versions of our model.

We present in turn the choice problems of the representative firm, the representative household,

the determination of wages, the actions of the government, and the definition of private-sector

equilibrium.

2.1 Production

The production side of the economy features a representative firm that must open vacancies, which

entail costs, in order to hire workers and produce. The representative firm is “large” in the sense

that it operates many jobs and consequently has many individual workers attached to it through

those jobs.

The firm requires labor and capital to produce its output. The firm must engage in costly search

for a worker to fill each of its job openings. In each job j that will produce output, the worker and

firm bargain over the pre-tax real wage wjt paid in that position. Output of any job j is given by

yjt = f(kjt), where f(.) exhibits diminishing marginal product. The capital kjt used in job j is

rented by the firm in a spot capital market at rental rate rt after it is known that an employee will

operate job j — that is, capital is rented only after it is certain there is an employee to operate it,

hence there are no issues about idle capital in our model.

Any two jobs ja and jb at the firm are identical, so from here on we suppress the second subscript

and denote by wt the real wage in any job, and so on. Total output of the firm thus depends on

does not arise. To understand why, consider an exogenous improvement in productivity. Following such a shift,

firms would try to hire more workers, which requires them to post additional vacancies. At the same time, improved

labor-market prospects, in the sense that the probability of finding a job has increased, causes movement of some

individuals from outside to inside the labor force, which raises measured unemployment. Hence, because the returns

to search have increased for both sides of the market, vacancies and unemployment move in the same direction. This

does not happen if the labor force is assumed fixed.
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the technology realization and the measure of matches nf
t that produce,

yt = nf
t f(kt). (1)

The total real wage bill of the firm is the sum of wages paid at all of its positions, nf
t wt, and the

total capital rental bill is nf
t rtkt.

The firm begins period t with employment stock nf
t−1. Its period-t productive employment

stock, nf
t , depends on its period-t vacancy-posting choices as well as the random matching process

described below.4 With probability q(θ), taken as given by the firm, a vacancy will be filled by a

worker. Labor-market tightness is θ ≡ v/u, where u denotes the number of individuals searching

for jobs. Matching probabilities for both firms and households depend only on aggregate market

tightness given the Cobb-Douglas matching function assumed below.

Our baseline wage-determination mechanism is Nash bargaining, as described below. In the

firm’s profit maximization problem, the wage-setting protocol is taken as given. We employ Nash

bargaining because it is familiar from baseline search models and has become common in DGE

search models, thus enhancing comparability with existing studies.

The firm thus chooses vacancies to post vt and a current employment stock nf
t to maximize

discounted profits starting at date t,

∞∑
t=0

βt
{
Ξt|0

[
nf

t f(kt)− wtn
f
t − rtktn

f
t − γvt

]}
, (2)

where Ξt|0 is the period-0 value to the representative household of period-t goods, which we assume

the firm uses to discount profit flows because households are the ultimate owners of firms.5 In

period t, the firm’s problem is thus to choose vt and nf
t to maximize (2) subject to a sequence of

perceived laws of motion for its employment level,

nf
t = (1− ρx)nf

t−1 + vtq(θt). (3)

Firms incur the real cost γ for each vacancy created, and job separation occurs with exogenous

fixed probability ρx. Note the timing of events embodied in the law of motion (3). Period t begins

with employment stock nf
t−1, some of whom separate from the firm before period-t production

4Labor-market matching thus occurs within a period, which, given the quarterly calibration we will pursue,

is empirically descriptive of U.S. labor-market flows — see, for example, the evidence of Davis, Faberman, and

Haltiwanger (2006). This so-called “instantaneous-hiring” view of labor-market flows has recently become widely

used in this class of models, employed by, among others, Blanchard and Gali (2007, 2008) and Krause, Lopez-Salido,

and Lubik (2007).
5Technically, of course, it is the real interest rate with which firms discount profits, and in equilibrium the real

interest rate between time zero and time t is measured by Ξt|0. Because there will be no confusion using this

equilibrium result “too early,” we skip this intermediate level of notation and structure.
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occurs; the firm posts vacancies and hires a flow of new employees q(θt)vt, which depends on both

the firm’s decisions and market conditions; the employment stock nf
t then engages in production.

The firm’s first-order conditions with respect to vt and nf
t yield the job-creation condition

γ

q(θt)
= f(kt)− wt − rtkt + (1− ρx)

[
Ξt+1|t

γ

q(θt+1)

]
, (4)

where Ξt+1|t ≡ Ξt+1|0/Ξt|0 is the household discount factor (again, technically, the real interest

rate) between period t and t + 1. The job-creation condition states that at the optimal choice,

the vacancy-creation cost incurred by the firm is equated to the discounted value of profits from

a match. Profits from a match take into account match output, the wage cost of the match, the

capital rental cost of the match, and the asset value of having a pre-existing relationship with an

employee in period t+ 1. This condition is a free-entry condition in the creation of vacancies and

is a standard equilibrium condition in a labor search and matching model.

Finally, because capital rental occurs in a spot market after the employment stock has been

resolved, optimal capital rental implies

rt = f ′(kt). (5)

2.2 Households

There is a representative household in the economy. Each household consists of a continuum of

measure one of family members, and each individual family member is classified as either inside

the labor force or outside the labor force. An individual family member that is outside the labor

force enjoys leisure. An individual family member that is part of the labor force is engaged in one

of two activities: working, or not working but actively searching for a job. The convenience of an

“infinitely-large” household is that we can naturally suppose that each individual family member

experiences the same level of consumption regardless of his personal labor-market status. This

tractable way of modeling perfect consumption insurance in general-equilibrium search-theoretic

models of labor markets has been common since Andolfatto (1996) and Merz (1995). We use the

terms “individual” and “family member” interchangeably from here on. Given the basics of the

environment, we also use the terms “leisure” and “outside the labor force” interchangeably from

here on.

As noted above, we construct our model in a flexible way to allow for two cases regarding

labor-force participation. In the first case, which corresponds to the benchmark Pissarides (2000)

model, the size of the labor force is exogenously fixed at the measure nh
t + uh

t = l̄ < 1, with l̄ a

parameter of the decentralized economy. With the labor-force participation rate fixed at l̄, the fixed

measure 1− l̄ = 1−uh
t −nh

t of family members thus enjoy leisure in every period. For reasons that

will become clear immediately below, we label this version of our model the pseudo-labor-force-

participation model, or pseudo-LFP model for short. In the second case, households each period
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optimally choose the size of nh
t + uh

t ; the labor-force participation rate is thus endogenous in every

period t. We label this version of the model the labor-force-participation model (LFP model). As

the descriptions below show, with the exception of one constraint, the analysis of the household

problem is identical in both the pseudo-LFP model and the LFP model.

2.2.1 Pseudo-LFP Model

Although the labor-force participation rate is fixed in the baseline environment, we formulate the

household problem as if there were free choice over the participation rate, but impose a constraint

that ensures it is always l̄. This formulation motivates our label “pseudo” LFP model. We empha-

size that while this formulation allows analysis of the household problem in a way that is easily

comparable with the full LFP model described below, in no sense do we mean that households

actually “make a participation decision” in the pseudo-LFP model. In the pseudo-LFP, it is always

the case that the size of the labor force is nh
t + uh

t = l̄. The advantage this formulation of the

problem delivers is that the shadow value of this size restriction directly enters the problem; this

shadow value sheds light on the mechanism driving our optimal-policy results.

Thus, we analyze the household as if it maximized its expected lifetime discounted utility

∞∑
t=0

βt
[
u(ct) + g(1− uh

t − nh
t )
]

(6)

subject to a sequence of flow budget constraints

ct +Kt+1 + bt = nh
t (1− τn

t )wt +
[
1 + (1− τk

t )(rt − δ)
]
Kt +Rtbt−1 + (1− τd)dt, (7)

a sequence of perceived laws of motion for the measure of family members that are employed,

nh
t = (1− ρx)nh

t−1 + uh
t p(θt), (8)

and the exogenous restriction on the size of the labor force

nh
t + uh

t = l̄. (9)

The functions u(.) and g(.) are standard strictly-increasing and strictly-concave subutility functions

over consumption and leisure, respectively.

The rest of the notation is as follows. The household’s holdings of government bonds at the end

of period t is bt, each unit of which pays a gross real return Rt+1 at the beginning of t+1, Kt denotes

the household’s capital holdings at the start of period t, and δ is the depreciation rate of capital.

As already defined above, each employed individual’s wage is wt, and the capital rental rate is rt.

Household labor income is taxed at the rate τn
t , and capital income net of depreciation is taxed

at the rate τk
t . The household takes as given the probability p(θ) that one of its unemployed and
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searching individuals will find employment. As with matching probabilities for firms, p depends only

on aggregate labor-market tightness given the assumption of a Cobb-Douglas matching technology.

Of course, because this is a Ramsey-taxation model, there are no lump-sum taxes or transfers

between the government and the private sector.

Due to firms’ sunk resource and time costs of finding employees, firms earn positive flows of

economic profits. These profits are transferred to households at the end of each period in lump-

sum fashion: dt is the household’s receipts of firms’ flow profits. We permit government taxation

of households’ receipts of dividends at the fixed tax rate τd. As is well-understood in the Ramsey

literature, flows of untaxed dividends received by households in and of themselves affect capital-

taxation prescriptions.6 To abstract from profit-taxation issues, our main analysis is conducted

assuming τd = 1. The consequence of this assumption is that any predictions made by our model

regarding optimal capital-income taxation cannot be due to incentives to tax profits.

The formal analysis of this problem is presented in Appendix A; here we simply describe in-

tuitively the optimality conditions that emerge. Two conditions are standard and thus deserve no

further discussion: a bond demand condition,

u′(ct) = βu′(ct+1)Rt+1, (10)

and a capital supply condition,

u′(ct) = βu′(ct+1)
[
1 + (1− τk

t+1)(rt+1 − δ)
]
. (11)

As usual, the bond demand condition defines the stochastic discount factor, Ξt+1|t = βu′(ct+1)/u′(ct),

with which firms, in equilibrium, discount profit flows.

More central to the analysis of the pseudo-LFP model is the household’s pseudo-labor-force

participation condition

g′(1 − uh
t − nh

t )

p(θt)
+

φt

p(θt)
= u′(ct)(1 − τn

t )wt − g′(1 − uh
t − nh

t ) − φt + β(1 − ρx)

[
g′(1 − uh

t+1 − nh
t+1)

p(θt+1)
+

φt+1

p(θt+1)

]
, (12)

which is derived in detail in Appendix A. In (12), φt denotes the Lagrange multiplier associated

with the constraint (9). Suppose for a moment that φt = 0, ∀t, which means there is no restriction

on the participation rate. With φt = 0, condition (12) has a straightforward interpretation: at the

optimum, the household each period sends a measure uh
t of family members to search for jobs until

the expected cost of search — the left-hand-side of (12) — is equated to the expected benefit of

search — the right-hand-side of (12). The expected cost of search is measured by the marginal

utility of leisure (each unit of search involves forgoing one unit of leisure). The expected benefit of
6See, for example, Stiglitz and Dasgupta (1971), Jones, Manuelli, and Rossi (1997), Schmitt-Grohe and Uribe

(2004), Siu (2004), Albanesi and Armenter (2007), Armenter (2008), and Arseneau, Chugh, and Kurmann (2008) for

examples in various contexts of this type of taxation incentive.
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search is the marginal utility value of after-tax wage income net of the marginal disutility of work

(the first two terms on the right-hand-side of (12)), along with the asset value to the household of

having an additional family member engaged in an ongoing employment relationship (the last term

on the right hand side of (12)). This asset value reflects the value to the household of sending one

fewer family member out to look for a job in the future.

With φt = 0, condition (12) naturally has the interpretation of a free-entry condition into the

labor force. However, because in the pseudo-LFP model the size of the labor force is fixed at l̄ < 1,

the shadow value φt is non-zero. The shadow value φt measures the value to the household of being

able to freely adjust its participation rate; as such, it can be interpreted as the price of participation.

In equilibrium, this shadow price adjusts so that condition (12) results in no net entry into or exit

from the labor force. Hence the terminology pseudo labor-force participation condition to refer

to (12). The shadow price φt is crucial in driving our optimal policy results below.

We again emphasize that in this version of the model, the participation rate nh
t + uh

t is indeed

fixed at l̄ every period. Hence, our pseudo-LFP formulation delivers the same household decisions

as if we had taken the more standard approach of specifying the household problem as one of

choosing only ct subject to the budget constraint (7), completely dropping constraints (8) and (9),

setting g(.) to a constant, and setting, as is common in DGE search models, nh
t + uh

t = l̄ = 1 ∀t. It

is not the underlying optimal choices of the household that we change by specifying the model this

way, it is only the way we analyze the household problem that is different. The important gain our

formulation brings to the analysis is being able to measure the shadow value φt.

2.2.2 LFP Model

If households were instead actually free to choose the labor-force participation rate, the household’s

decision problem would be exactly as just described, except of course constraint (9) would not bind

household behavior. Household optimal choices would thus be characterized by the bond demand

condition (10), the capital supply condition (11), and the “true” labor-force participation condition,

g′(1− uh
t − nh

t )
p(θt)

= u′(ct)(1− τn
t )wt − g′(1− uh

t − nh
t ) + β(1− ρx)Et

{
g′(1− uh

t+1 − nh
t+1)

p(θt+1)

}
, (13)

which of course is simply condition (12) with φt = 0 ∀t. Except for differences in timing, which

of course do not matter in the long run, this participation condition appears in Domeij (2005, p.

627), as well.

Despite the search frictions and long-lived nature of employment relationships, the labor-force

participation condition (13) has the same interpretation as the labor-supply function in a simple

neoclassical labor market, as exists in standard Ramsey models. Indeed, we can recover a neo-

classical labor market by setting ρx = 1 (all employment “relationships” are one-period, spot,
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transactions) and fixing the probability of “finding a job” to p(θ) = 1 (because in a neoclassical

market there of course is no friction in “finding a job”). Imposing these assumptions and logic

on (13), we obtain g′(.)
u′(.) = (1 − τn

t )wt, which defines the labor-supply function in a neoclassical

market.

With matching frictions that create a meaningful separation of the labor force into those individ-

uals that are employed and those individuals that are unemployed, condition (13) defines transitions

of individuals from outside the labor force (leisure, in our model) into the pool of searching unem-

ployed, from where the aggregate matching process will pull some individuals into employment. In

the pseudo-LFP model, condition (12) plays the same conceptual role, but, because the participa-

tion rate is exogenous, what it pins down is the shadow price φt rather than the participation rate.

We thus speak of (13) and (12) as labor-force participation functions, rather than labor-supply

functions.

2.3 Wage Bargaining

The wage-determination mechanism is Nash bargaining. Specifically, we assume that wages of all

workers, whether newly-hired or not, are set in period-by-period Nash negotiations. This assump-

tion is common in DGE search models. A detailed derivation of the wage-bargaining problem is

presented in Appendix B. We point out that the Nash wage function is the same for both the

pseudo-LFP model and the LFP model, reflecting the fact that the shadow value φt is not a price

that either firms or households in the economy observe, nor is it a payoff any party can ever receive;

it thus plays no role in the bargaining process. Thus, φt is truly a shadow price in our analysis.

In what follows, we simply present the bargaining outcome. Assuming that η ∈ (0, 1) is a

worker’s Nash bargaining power and 1−η a firm’s Nash bargaining power, the Nash wage outcome

is given by

wt = η [f(kt)− rtkt] + (1− η)
g′(1− uh

t − nh
t )

u′(ct)(1− τn
t )

+ η(1− ρx)Ξt+1|t
γ

q(θt+1)

[
τn
t+1 − τn

t

1− τn
t

]
. (14)

The first two terms in (14) show that part of the period-t wage payment is a convex combination of

the contemporaneous values to the firm and the household, given, respectively, by the net revenue

(f(kt)− rtkt) generated for the firm by a new employment match and the after-tax MRS between

consumption and leisure. The last term in (14) captures the forward-looking, relationship, aspect

of employment, whose value is also capitalized in the period-t wage payment.

In a dynamic analysis, the forward-looking change in tax rates, τn
t+1 − τn

t , affects the period-

t bargained wage. If labor tax rates were instead constant at τn
t = τ̄n ∀t, the wage outcome

would be truly static: wt = η [f(kt)− rtkt] + (1 − η) g′(1−ut−nt)
u′(ct)(1−τ̄n) ∀t. In this case, the presence of

the labor tax only changes firms’ effective bargaining power in a static manner: τ̄n > 0 causes
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(1 − η)/(1 − τ̄n) > 1 − η. However, steady state cannot be imposed before construction of the

Ramsey problem, so the fully-dynamic wage rule (14) is part of the definition of a private-sector

equilibrium presented below.

2.4 Government

The government finances an exogenous stream of spending {gt} by collecting labor income taxes,

capital income taxes, dividend income taxes, and real debt. The period-t government budget

constraint is

τn
t wtnt + τk

t (rt − δ)Kt + τddt + bt = gt +Rtbt−1. (15)

2.5 Matching Technology

In equilibrium, nt = nf
t = nh

t , so we now refer to employment simply as nt. Matches between

unemployed individuals searching for jobs and firms searching to fill vacancies are formed according

to a constant-returns matching technology,m(ut, vt), where ut is the number of searching individuals

and vt is the number of posted vacancies. A fraction ρx of matches that produced in period t− 1

are exogenously destroyed before period t. All newly-formed matches produce at least once before

possibly dissolving. The evolution of aggregate employment is thus given by

nt = (1− ρx)nt−1 +m(ut, vt). (16)

2.6 Private-Sector Equilibrium

Whether considering the pseudo-LFP model or the LFP model, a symmetric private-sector equi-

librium is made up of endogenous processes {ct,Kt+1, wt, kt, nt, vt, ut, Rt, bt}∞t=0 that satisfy the

vacancy-posting condition (4), the capital-demand condition (5), the bond-demand condition (10),

the capital-supply condition (11), the Nash wage outcome (14), the government budget con-

straint (15), the law of motion for the aggregate stock of employment (16), the aggregate resource

constraint of the economy

ct + gt +Kt+1 − (1− δ)Kt + γvt = ntf(kt), (17)

and the relationship between the quantity of aggregate capital and the quantity of capital used in

any given match

Kt = ntkt. (18)

Note that in (17), total costs of posting vacancies γvt are a resource cost for the economy. Also

note the nature of capital-market clearing. The aggregate capital stock Kt, which in equilibrium is
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accumulated by the representative household, is pre-determined in period t. However, because em-

ployment nt is not pre-determined (recall, with our empirically-supported timing assumption, that

matching and the onset of production occurs within the same period), the allocation of aggregate

capital across the nt productive employment relationships is also not pre-determined.

To complete the set of conditions characterizing equilibrium, in the LFP model, we need the

labor-force participation condition (13), while in the pseudo-LFP model, we need the pseudo-LFP

condition (12) as well as the exogenous restriction on the total size of the labor force

nt + ut = l̄. (19)

In the pseudo-LFP model, the endogenous process of shadow prices {φt}∞t=0 is also added to the list

of endogenous equilibrium processes. Finally, in either the pseudo-LFP model or the LFP model,

the private sector takes as given the sequence {gt, τ
n
t , τ

k
t }∞t=0.

3 Efficient Allocations

To understand the optimal taxation results that emerge from the Ramsey problem, it is useful to

first present the conditions that characterize the constrained-efficient allocation that would be cho-

sen by a social planner that is restricted by the matching technology and that is able to efficiently

allocate individuals across participation and non-participation. The social planner chooses decision

rules for the allocation {ct,Kt+1, kt, ut, nt, vt} to maximize the lifetime utility (6) of the represen-

tative household subject to the law of motion of the employment stock (16), the goods-resource

constraint (17), and the relation between match-level capital and aggregate capital (18).

After imposing deterministic steady state on the first-order-conditions of this problem, two sim-

ple efficiency conditions describe the constrained-efficient outcome. We summarize these conditions

in the following proposition:

Proposition 1. (Efficient Allocations) There exists a constrained-efficient allocation in which

steady-state efficiency along the consumption-leisure margin is characterized by

g′(1− n− u)
u′(c)

= γθ
ξu

1− ξu
, (20)

and steady-state efficiency along the capital accumulation margin is characterized by

1
β
− 1 + δ = f ′(k). (21)

Proof. See Appendix C.

Proposition 1 will help us understand the conditions under which the Ramsey government

implements a non-zero capital tax in the long run. We now turn to the description of the Ramsey

problem.
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4 Ramsey Problem

The Ramsey government raises revenue through labor, capital, and dividend income taxes in such

a way that maximizes the welfare of the representative household, subject to implementation as a

decentralized search equilibrium. As we mentioned in the description of the household problem,

the Ramsey government trivially would like to tax dividend income as heavily as possible because

it represents a lump-sum source of income for households. Thus, we simply fix τd = 1, the largest

possible (sensible) rate; this setting has the virtue of removing any motive to use the capital income

tax to indirectly tax profits.

In principle, the Ramsey problem is to maximize (6) subject to all of the equilibrium conditions

listed in Section 2.6. However, we can condense many of the equilibrium conditions into more

compact summary descriptions. In standard Ramsey fashion, we condense the equilibrium condi-

tions (5) (capital demand by firms), (10) (bond demand by households), (11) (capital supply by

households), and the government budget constraint (15) in a single present-value implementability

constraint (PVIC)
∞∑

t=0

βt
{
u′(ct)ct −

[
g′(1− ut − nt) + φt

]
(nt + ut)− u′(ct)(1− τd)dt

}
= A0, (22)

where A0 represents the time-zero liabilities of the government. The PVIC is expressed in terms

of only allocations and has the interpretation that the initial liabilities of the government must be

covered by the present value of all fiscal surpluses starting from date zero. A detailed derivation is

presented in Appendix D.7

We can also condense the three conditions that characterize equilibrium in the labor market

in period-t, the vacancy-posting condition (4), the pseudo-LFP condition (12), and the Nash wage

outcome (14), into a single constraint.8

Ψ(ct, ct+1, ut, ut+1, nt, nt+1, vt, vt+1, kt, τ
n
t , τ

n
t+1) = 0, (23)

which is fully described and derived in Appendix E. Note that this summary description of the

labor-market equilibrium depends on both period-t and period-t + 1 outcomes. The intuition of

the proofs we present below goes through this Ψ(·) function.

The Ramsey problem is to choose state-contingent functions for the process {ct,Kt+1, kt, ut, nt, vt, τ
n
t },

taking as given an exogenous stream of government purchases {gt} and initial values n−1, k−1,K0,

such that they maximize the discounted lifetime utility of the representative household, (6), sub-

ject to the PVIC (22), the sequence of labor-market equilibria (23), and the sequence of resource
7Also note that we substitute into the PVIC the equilibrium expression for flow dividends, dt = ztnt−wtnt−γvt;

however, this will not matter for the Ramsey equilibrium because of our assumption τd = 1.
8We construct the Ψ(.) function using the pseudo-LFP condition (12) because by simply setting φt = 0 it also

nests the LFP condition (13).
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constraints (16), (17) and (18). If participation is assumed fixed, the Ramsey problem must also

take as a constraint the sequence of size restrictions (19).

In solving the Ramsey problem computationally, we adopt a ”timeless” perspective by assuming

that the time-zero Ramsey allocation is the same as the asymptotic steady state Ramsey allocation,

thus endogenizing the initial condition of the economy. Finally, throughout our analysis, we assume

that the first-order conditions of the Ramsey problem are necessary and sufficient and that all

allocations are interior.

5 Optimal Capital Taxation: Analytical Results

We first characterize analytically the conditions under which a zero long-run capital income tax

is optimal. We begin with the case in which labor force participation is chosen optimally by the

household, after which we turn to the case in which participation is fixed.

5.1 Efficient Labor Force Participation

Suppose that the household is free to choose its labor force participation, n+u, optimally, in which

case we are in the LFP environment. The following proposition presents sufficient conditions for

the optimality of a zero long-run capital tax.

Proposition 2. (Efficient LFP and Zero Capital Taxation) If labor force participation is

determined optimally in the decentralized economy (which implies φ = 0) and if the Hosios condition

(η = ξu) holds, the Ramsey steady state features τk = 0.

Proof. See Appendix E.

The logic of the proof is as follows. When η = ξu, the resulting efficient split of the surplus

allows the constraint imposed by the equilibrium in the labor market to simplify considerably to

the following expression

Ψ(·) =
g′(1− nt − ut)

u′(ct)
− (1− τn

t )γθt
ξu

1− ξu
= 0. (24)

In this case, Ψ(·) is virtually identical, up to the presence of the labor income tax, to the

efficiency condition given by equation (20). Furthermore, it is independent of the sequence of

capital stocks (either match-level or aggregate capital stocks). From a technical perspective, this

implies that labor market outcomes in no way constrain the choice of the optimal capital tax; hence,

the Ramsey planner is free to set the capital tax in such a way as to minimize the distortion to the

capital accumulation margin. The result is a zero optimal capital tax for exactly the same reason

as in the original Chamely (1986) analysis.
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In the more general case in which η 6= ξu, the labor market constraint Ψ(·) does not simplify,

rather it remains a complicated nonlinear function of the capital stock. The implication is that the

Ramsey planner faces a tradeoff. There is, on the one hand, an incentive to use the capital tax

to help minimize the labor market distortion resulting from the inefficient division of the surplus.

Doing so, however, comes at the expense of disrupting the capital accumulation margin. We confirm

the previous finding of Domeij (2005) that this tradeoff resolves in a non-zero capital tax.

The core intuition is identical to that described in Domeij (2005). When η < ξu, the share of the

surplus that accrues to the firm is too high relative to what is privately efficient. Households will

respond by searching too little and firms will search too much, resulting in a θ that is inefficiently

high. The Ramsey planner can raise the capital tax, which, by lowering the capital stock, indirectly

decreases the marginal product of labor making job creation less profitable for firms. Decreased

vacancy posting then pushes θ closer to its (second-best) efficient level. The opposite intuition

holds when η > ξu. In section 6, we use a calibrated version of our economy to quantitatively

demonstrate the relationship between bargaining power and the optimal capital tax.9

5.2 Fixed Labor Force Participation

A common assumption in much of the literature studying labor search frictions in a general equilib-

rium setting is that the participation rate is fixed, n+u = l̄. The following proposition summarizes

the conditions for the optimality of a zero long-run capital income tax under this assumption.

Proposition 3. (Inefficient LFP and Non-Zero Capital Taxation) If labor force participa-

tion is fixed at n+ u = l̄ (which implies φ 6= 0), then the Ramsey steady state features τk = 0 if at

least one of the following conditions holds:

1. The labor force participation rate is exogenously parameterized, so that g′(l̄) = −φ; or

2. The Hosios condition holds (η = ξu) and all matches are destroyed at the end of every period,

so that ρx = 1.

Proof. See Appendix E.
9While Domeij (2005) is able to analytically sign the optimal capital tax as a function of bargaining power, we

are not and thus must rely on quantitative evidence. The difference is due to alternative assumptions regarding

wage determination across the two papers. In this paper, the wage is determined based on Nash bargaining over a

surplus that is explicitly defined by value functions determined via envelope conditions. Continuation values play a

prominent role in the resulting Nash wage expression; it is these continuation values that prohibit a clean analytic

solution to the optimal capital tax for all but the special cases outlined in propositions 2 and 3. In contrast, Domeij

(2005) uses a simple split of the contemporaneous surplus, which effectively ignores continuation values. (A proof

that Domeij’s wage satisfies the zero capital tax in our model setup is available from the authors upon request.)
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The logic of the proof is similar to that of proposition 2. With the exception of the two special

cases outlined in the proposition, the equilibrium in the labor market imposes a binding constraint

for the choice of the optimal capital income tax; hence, τk is, in general, nonzero when φ 6= 0. This is

true regardless of whether or not the Hosios parameterization is assumed. The intuition is similar to

that behind proposition 2. When labor force participation is inefficiently high, the Ramsey planner

can implement a negative capital tax, thereby increasing the profitability of hiring. Higher vacancy

posting pushes θ back closer to its (second-best) efficient level. The opposite intuition holds when

labor force participation is inefficiently low. We explore the quantitative relationship between φ

and the optimal capital tax in greater detail in section 6.

We turn now to the two unique exceptions, outlined in proposition 3, to our general charac-

terization of the optimality of the nonzero capital income tax. The first case is the one in which

labor force participation is parameterized such that the marginal utility of leisure is exactly offset

by the shadow cost to the household of not optimizing along the labor force participation margin,

so that g′(1 − n − u) = −φ. The intuition behind why optimal capital tax is zero in this special

case is that the assumption g′(1 − n − u) = −φ implies that τn is a lump sum tax instrument.

Thus, regardless of whether of not the Hosios condition holds, the Ramsey planner will always find

it optimal to finance all government expenditures with the non-distortionary labor tax. Appendix

E offers a proof that the labor tax is a lump sum instrument in this special case. The second case

is the one in which ρx = 1. When matches are destroyed at the end of every period, they have no

continuation value and the capital tax cannot be used to influence match formation. For the most

part, we view both of these parameterizations as largely uninteresting, knife-edge cases.

5.3 Discussion

A brief summary of our analytical results is as follows. Proposition 2 simply restates the previous

finding of Domeij (2005) that the Hosios condition delivers a zero optimal capital tax provided labor

force participation is efficient. The primary contribution of this paper, summarized in proposition

3, is to show that this result does not generalize to a modeling framework in which labor force

participation is assumed exogenous and, therefore, is not necessarily efficient.

Given that much of the existing literature studying optimal policy in a labor search and match-

ing environment assumes fixed participation, we think our more general result is an important one

to stress to the broader literature. Optimal policy prescriptions in the search and matching mod-

eling framework are highly sensitive to assumptions regarding adjustment along the labor force

participation margin. In this paper, we show that that it matters from one of the most basic

principles of optimal fiscal policy: the Chamely/Judd prescription of a zero optimal capital tax.

Finally, it is useful to tie our results in more closely with recent developments in the literature
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on optimal capital taxation. In particular, our proofs of propositions 2 and 3 fit squarely into the

general sufficient conditions provided by Albanesi and Armenter (2008) in their synthesis of various

capital-taxation results. One simple way to understand their result is that if the non-technological

constraints faced by the Ramsey government do not depend on capital stocks, then a zero capital

tax is optimal in the long run. Both of our propositions fit squarely into their general result.

6 Optimal Capital Taxation: Quantitative Results

In this section, we use an calibrated version of our model to examine the quantitative magnitude

of the optimal capital tax result found in the previous section. The following subsection describes

the parameterization of the model and the results are presented in section 6.2

6.1 Parameterization

For utility, standard functional forms are used,

u(ct) =
1

1− σ
c1−σ
t (25)

and

g(xt) =
κ

1− ι
x1−ι

t . (26)

The time unit is meant to be a quarter, so we set the subjective discount factor to β = 0.99, yielding

an annual real interest rate of about four percent. In the baseline analysis we set the curvature

parameter with respect to consumption to σ = 1, but also consider the sensitivity of our optimal

taxation results to higher levels of risk aversion.

For the subutility function over leisure, we set ι = 1 in the baseline analysis, which corresponds

to a unit elasticity of labor-force participation. This value is a common compromise in DGE

models because it lies between macro evidence that suggests a very high elasticity of labor supply

and micro evidence that suggests a very low elasticity of labor supply. We emphasize, however, that

ι measures the elasticity of labor-force participation in our environment, not the elasticity of labor

supply per se, due to the search frictions. We nonetheless set ι = 1 to achieve some comparability

with standard DGE models that study optimal policy, but also consider the sensitivity of our results

to more elastic participation.

To emphasize the consequences of inefficient labor force participation for the capital income

tax, we start with a parametrization in which the long-run (deterministic) Ramsey steady state

is identical in both the LFP model and the pseudo-LFP model. By then perturbing parameters

around this knife-edge case, we will be able to isolate the role of inefficient participation. To inform

these experiments, note that the average labor-force participation rate in the U.S. during the period
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1988-2007 was 66 percent, so we set l̄ = 0.66 as the measure of individuals in the representative

household that are in the labor force on average in the LFP model.10 The parameter κ is then

chosen so that n+u = l̄ = 0.66 in the Ramsey steady-state of the LFP model. The resulting value is

κ = 0.41. Because this setting for κ makes l̄ = l∗ = 0.66 endogenously optimal in the LFP model, it

has the consequence that in the pseudo-LFP model, in which we exogenously impose n+u = l̄ = l∗,

the equilibrium value of the multiplier φ is exactly zero. It is thus this precise setting for κ that, in

concert with the rest of the calibration, makes the Ramsey steady-states identical in the two cases.

In the pseudo-LFP model, however, the optimality of l̄ = l∗ = 0.66 is a knife-edge case. Our

main quantitative experiment is thus to vary l̄ both above and below l∗ to illustrate how the Ramsey

optimal capital tax responds to the inefficiency in the participation margin. For our quantitative

exercises we consider participation rates that are 5 percent above (l̄ > l∗) and 5 percent below

(l̄ > l∗) the optimal level.

The production function displays diminishing returns in capital,

f(kt) = kα
t . (27)

and we set capital’s share to α = 0.3. The quarterly depreciation rate of capital is δ = 0.02.

The matching function is Cobb-Douglas, m(u, v) = ψuξu
t v

1−ξu
t , with ξu = 0.4, in line with the

evidence in Blanchard and Diamond (1989), and ψ chosen so that the quarterly job-finding rate

of a searching individual is 90 percent. The resulting value is ψ = 0.9. Given the Cobb-Douglas

matching specification, this also directly fixes the matching rate for an open vacancy at the same

value, q(θ) = 0.90.

For our baseline results, we fix the Nash bargaining weight at η = 0.40 so that it satisfies the

usual Hosios (1990) condition η = ξu for partial-equilibrium search efficiency. We use this as our

baseline setting because our main focus is on the consequences of inefficient participation even if

the Hosios parametrization is in place. To show how our results reconcile with Domeij (2005),

however, we also conduct some robustness exercises with respect to this parameter.

6.2 Quantitative Results

The upper panel of table 1 presents key steady-state allocations and policy variables under the

Ramsey plan for three alternative parameterizations of the model, each of which correspond to a

different level of labor force participation. The middle row presents allocations and policy variables

from our baseline calibration in which participation is fixed at its efficient level, l̄ = l∗ = 0.66. The
10We focus on just this latter time period because by the late 1980’s the trend rise in women’s labor force par-

ticipation had largely played out, so that this latest period perhaps represents a true steady state participation

rate.
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τk τn φ u n w c K y c/y K/y γv/y g/y

Ramsey allocations

l̄ < l∗ 0.271 0.297 0.253 0.028 0.582 1.322 0.843 13.150 1.484 0.569 8.864 0.007 0.202

l̄ = l∗ 0 0.300 0 0.066 0.594 1.614 0.888 15.852 1.591 0.558 9.966 0.004 0.189

l̄ > l∗ −0.072 0.319 −0.304 0.168 0.542 1.762 0.789 14.946 1.466 0.538 10.197 0.002 0.205

Socially-efficient allocations

— — 0 0.073 0.655 1.614 1.011 17.494 1.755 0.576 9.966 0.004 0.171

Table 1: Steady-state Ramsey and socially-efficient allocations.

top row presents the same information with an exogenously imposed labor force participation rate

that is below the efficient level (l̄ = 0.61 < l∗) so that leisure is inefficiently high, and the bottom

row imposes a fixed labor force participation rate that is above the efficient level (l̄ = 0.71 > l∗) so

that leisure is inefficiently low. For each case, we assume the Hosios parameterization, η = ξu, holds.

Finally, the lower panel of the table presents the allocations in the socially efficient equilibrium, as

outlined in section 3.

Comparing the middle row of the top panel to the socially efficient allocations, the Ramsey

allocations differ from the socially efficient allocations because the Ramsey planner is forced to

finance government spending via labor income taxation. Relative to the socially efficient outcome,

the distortion generated by the labor income tax causes the household to substitute out of both

work and search activity and into leisure, with u and n falling in equal proportion. Consumption,

the aggregate capital stock, and output are all, of course, lower as a result. Note, though, that in

this case the K/y ratio, the Nash wage, and labor-market tightness (not shown) are identical in

both the Ramsey and socially-efficient allocations. Finally, the fact that the capital income tax is

zero in the Ramsey equilibrium follows directly from proposition 1.

In order to shed light on how deviations in labor force participation from the second best Ramsey

equilibrium, l∗, influence the baseline results, compare the middle row of the top panel (l̄ = l∗)

to the top row (l̄ < l∗). When participation is constrained to be inefficiently low, the household

over-consumes leisure implying that the shadow value of adjustment along the participation margin

is non-zero, φ = 0.253. In absence of a more direct fiscal instrument to affect participation, the

Ramsey planner can use the capital tax to indirectly ease the resulting labor market distortion. The

basic intuition builds on the fact that the household is exogenously forced to consume more leisure

than it would otherwise want to in absence of the fixed participation constraint. With too few

workers in the eocnomy, output is also pushed below its constrained efficient level. The Ramsey
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planner can help mitigate this distortion by increasing the capital tax. The higher capital tax

increases the hiring incentive of firms by lowering the Nash wage through a reduction of the capital

stock (we have that ∂w
∂k = −ηf ′′(k)k > 0 in the steady state version of equation 14). Increased

vacancy posting on the part of firms helps to lower the unemployment rate (u/(u + n)), thereby

putting more searching individuals into productive jobs which mitigates the total distortion to

output. A similar, but opposite, intuition applies when labor force participation is inefficiently

high, as shown in the bottom row.

Table 2 shows how the optimal tax rates in the Ramsey equilibrium vary with bargaining

power across the three different parameterizations for labor force participation. The middle column

replicates the optimal tax rates presented in table 1 at the Hosios condition, η = ξu, for each of

the three parameterizations of labor force participation. We then vary bargaining power in the

neighborhood of the Hosios condition to examine the sensitivity of the optimal tax results.

ξu = 0.4

η = 0.2 η = 0.3 η = 0.4 η = 0.5 η = 0.6

Inefficiently Low LFP, (̄l < l∗)

τk 50.8 38.6 27.1 15.7 3.8

τn 28.5 28.9 29.7 30.7 32.0

Efficient LFP, (̄l = l∗)

τk 10.7 5.1 0 −5.3 −11.6

τn 28.8 29.3 30.0 30.9 32.2

Inefficiently High LFP, (̄l > l∗)

τk −2.9 −4.8 −7.2 −10.4 −14.7

τn 30.6 31.1 31.9 32.8 34.1

Table 2: Optimal tax rates

With efficient labor force participation (l̄ = l∗) the middle panel of the table tells a similar

story to the results presented in Domeij (2005): the optimal capital tax remains fairly low, varying

between −11 and 11 percent as η varies between 0.2 and 0.6. Looking at the upper and lower

panels of the middle column, even with efficient bargaining, the table shows that efficiency along

the labor force participation margin has a significant quantitative effect on the optimal capital

tax. Furthermore, this impact grows even larger when the participation distortion interacts with

the bargaining distortion (moving either to the left or the right of the middle column). Thus, a

key thing to take from this table is that efficiency along the labor force participation margin is

an important determinate of the optimal capital tax; quantitatively, it is at least as important as

bargaining efficiency.

Finally, table 3 shows how sensitive our results are to alternative assumptions regarding prefer-
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ences. The top panel considers higher risk aversion, with σ = 3 as opposed to σ = 1 in the baseline

and the bottom panel considers a higher elasticity of labor force participation, with ι = 2.5 as

opposed to ι = 1 in the baseline.

ξu = 0.4

η = 0.2 η = 0.3 η = 0.4 η = 0.5 η = 0.6

Risk aversion, σ = 3

Inefficiently Low LFP, (l̄ < l∗) τk 20.1 11.5 4.5 −2.9 −8.9

τn 24.9 26.3 27.5 28.6 29.7

Efficient LFP, (l̄ = l∗) τk 10.7 5.1 0 −5.3 −11.6

τn 26.4 27.2 28.0 28.9 30.0

Inefficiently High LFP, (l̄ > l∗) τk −2.9 −4.9 −7.4 −10.6 −15.1

τn 28.7 29.1 29.5 30.1 30.9

Labor force participation elasticity, ι = 2.5

Inefficiently Low LFP, (l̄ < l∗) τk 53.6 46.0 36.8 26.4 14.3

τn 63.6 58.2 54.8 52.9 52.3

Efficient LFP, (l̄ = l∗) τk 10.7 5.1 0 −5.3 −11.6

τn 45.7 45.5 46.0 46.8 48.3

Inefficiently High LFP, (l̄ > l∗) τk −2.8 −4.6 −6.8 −9.7 −13.8

τn 47.4 48.2 49.2 50.5 52.4

Table 3: Sensitivity of optimal tax rates to preference parameters

Provided the model is efficient along the labor force participation margin, the optimal capital

tax is essentially insensitive to these two preference parameters. This echoes the sensitivity results

presented in Domeij (2005). In contrast, the optimal capital tax appears quite sensitive to preference

assumptions in the presence of an inefficiency in the participation margin. Regardless of whether

participation is too high or too low, both the Ramsey optimal capital and labor income tax rates

vary considerably with η for different values of either risk aversion or the elasticity of labor force

participation.

7 Conclusion

We study optimal capital income taxation in a DGE model with search and matching frictions in

the labor market. Our main result is to show analytically that inefficient labor force participation

gives rise to a non-zero capital income taxation in the long run. If participation is inefficiently low,

a capital tax can be implemented to stifle vacancy postings through a reduction in the profitability

of job creation. Doing so pushes labor market tightness closer to its constrained efficient level. The

opposite intuition holds when participation is inefficiently high. In a calibrated version of our econ-

omy, we show that the quantitative magnitude of the optimal capital income tax is quite sensitive
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to the size of the inefficiency in the participation margin. By highlighting the importance of this

margin for the most basic optimal fiscal policy prescription, our work raises an important caution-

ary note for typical formulations of DSGE labor search models, especially as they are increasingly

applied to study policy questions.
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A Deriving the Pseudo-Labor-Force Participation Condition

In the pseudo-LFP model, we view the household as facing the problem of choosing state-contingent

processes for {ct}, {Kt+1}, {bt}, {uh
t }, and {nh

t } to maximize

max
∞∑

t=0

βt
[
u(ct) + g(1− uh

t − nh
t )
]

(28)

subject to sequences of flow budget constraints

ct +Kt+1 + bt = (1− τn
t )wtn

h
t +

[
1 + (1− τk

t )(rt − δ)
]
Kt +Rtbt−1 + (1− τd)dt, (29)

perceived laws of motion for the employment stock

nh
t = (1− ρx)nh

t−1 + uh
t p(θt), (30)

and the restriction that the size of the labor force is fixed

nh
t + uh

t = l̄. (31)

As discussed in Section 2, this formulation is an analytical tool. The households in this environment

do not actually make any decisions regarding the stocks of uh and nh; rather, by casting the model

in this way, we are able to track the shadow price on the restriction nh + uh = l̄ that would make

it optimal for the household to always choose, if it could do so, the sum nh + uh.

Denote by {λt}, {µh
t }, and {φt} the sequences of Lagrange multipliers on the sequences of these

constraints, respectively. The first-order conditions with respect to ct, Kt+1, bt, uh
t and nh

t are,

respectively,

u′(ct)− λt = 0, (32)

−λt + βRtλt+1 = 0, (33)

−λt + βλt+1

[
1 + (1− τk

t+1)(rt+1 − δ)
]

= 0, (34)

−g′(1− uh
t − nh

t ) + µh
t p(θt)− φt = 0, (35)

and

−µh
t + λt(1− τn

t )wt − g′(1− uh
t − nh

t )− φt + β(1− ρx)µh
t+1 = 0. (36)

Conditions (32) and (33) clearly yield a standard bond-demand condition, which is expression (10)

in the main text. Conditions (32) and (34) yield a standard capital-supply condition, which is

expression (11) in the main text.

To obtain the pseudo-labor-force-participation (LFP) condition, start with (35) and (36). Solv-

ing (35) for µh
t ,

µh
t =

g′(1− uh
t − nh

t )
p(θt)

+
φt

p(θt)
, (37)
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in which we have used the result λt = u′(ct), which follows from (32). Using this expression and

its period t+ 1 analog in (36), we have

g′(1− uh
t − nh

t )
p(θt)

+
φt

p(θt)
= u′(ct)(1−τn

t )wt−g′(1−uh
t −nh

t )−φt+β(1−ρx)Et

{
g′(1− uh

t+1 − nh
t+1)

p(θt+1)
+

φt+1

p(θt+1)

}
,

(38)

which is the pseudo-LFP condition presented in condition (12) in the main text.
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B Nash Bargaining

The Nash bargaining problem and hence the wage rule does not depend on whether or not labor

force participation is fixed or endogenous. The bargaining-relevant value equations are defined using

the household-level envelope conditions. A household’s state variable is its beginning-of-period-t

employment stock, nh
t−1. Regardless of whether or not participation is fixed or endogenous, the

household perceives that its employment evolves according to

nh
t = (1− ρx)nh

t−1 + p(θt)uh
t . (39)

Define V(nh
t−1) as the value function associated with the optimal plan that solves the household

problem. The envelope condition is thus V′(nh
t−1) = (1 − ρx)µh

t , where µh
t is the value to the

household of having one more family member employed in period t. In turn, this value is given by

µh
t = λt(1− τn

t )wt − g′(1− uh
t − nh

t ) + β(1− ρx)µh
t+1 (40)

because an additional employed member brings to the household an after-tax wage (measured in

utility — λt is the marginal utility of wealth), incurs disutility for the household by decreasing its

leisure, and has a continuation value from the perspective of the household. Using this value µh
t ,

we can express the envelope condition as

V′(nh
t−1)

1− ρx
= λt(1− τn

t )wt − g′(1− uh
t − nh

t ) + β(1− ρx)

(
V′(nh

t )
1− ρx

)
, (41)

in which we have normalized by 1− ρx due to the timing of events.

To express things in units of goods, define Wt as

Wt ≡
V′(nh

t−1)
λt(1− ρx)

= −g
′(1− uh

t − nh
t )

λt
+ (1− τn

t )wt + (1− ρx)

(
βV′(nh

t−1)
λt(1− ρx)

)

= −g
′(1− uh

t − nh
t )

λt
+ (1− τn

t )wt + (1− ρx)
(
Ξt+1|tWt+1

)
. (42)

The second line makes use of the definition of the one-period-ahead stochastic discount factor,

Ξt+1|t ≡ βλt+1/λt.

In the pseudo-LFP model, nh
t−1 + uh

t−1 = l̄, which means that, given we have used nh
t−1 as the

state variable of the household problem, we do not need to also specify uh
t−1 as a state. Hence, the

value to the household of an unemployed family member is Ut ≡
(
∂Vt/∂u

h
t−1

)
/λt = 0.

On the firm side, the value of having an additional employee is

Jt = f(kt)− wt − rtkt + (1− ρx)
(
Ξt+1|tJt+1

)
; (43)

for use below, note that Jt = γ
q(θt)

.
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In generalized Nash bargaining, the parties choose wt in every period t to maximize

(Wt −Ut)
η Jt

1−η. (44)

The solution to this problem gives the time-t generalized Nash sharing rule, Wt
1−τn

t
= η

1−ηJt.

Now proceed to derive an explicit expression for wt. Inserting the definition of Wt into the

Nash sharing rule,

−g
′(1− uh

t − nh
t )

λt(1− τn
t )

+ wt +
1− ρx

1− τn
t

(
Ξt+1|tWt+1

)
=

η

1− η
Jt, (45)

and then using the time-t+ 1 Nash sharing rule,

−g
′(1− uh

t − nh
t )

λt(1− τn
t )

+ wt +
1− ρx

1− τn
t

(
Ξt+1|t(1− τn

t+1)
η

1− η
Jt+1

)
=

η

1− η
Jt. (46)

Make the substitution Jt = γ
q(θt)

, and similarly for Jt+1, which yields

−g
′(1− uh

t − nh
t )

λt(1− τn
t )

+ wt +
1− ρx

1− τn
t

(
Ξt+1|t(1− τn

t+1)
η

1− η

γ

q(θt+1)

)
=

η

1− η

γ

q(θt)
. (47)

Next, use the job-creation condition γ
q(θt)

= f(kt)−wt− rtkt +(1−ρx)
(
Ξt+1|t

γ
q(θt+1)

)
to substitute

on the right-hand-side, which gives

−
g′(1 − uh

t − nh
t )

λt(1 − τn
t )

+ wt +
1 − ρx

1 − τn
t

(
Ξt+1|t(1 − τn

t+1)
η

1 − η

γ

q(θt+1)

)
=

η

1 − η

[
f(kt) − wt − rtkt + (1 − ρx)

(
Ξt+1|t

γ

q(θt+1)

)]
.

(48)

Grouping terms involving wt,

wt

[
1 +

η

1− η

]
=

η

1− η
(f(kt)− rtkt) +

g′(1− uh
t − nh

t )
λt(1− τn

t )

− η

1− η

1− ρx

1− τn
t

(
Ξt+1|t(1− τn

t+1)
γ

q(θt+1)

)
+

η

1− η
(1− ρx)

(
Ξt+1|t

γ

q(θt+1)

)
. (49)

Multiplying by 1− η gives

wt = η(f(kt)− rtkt) + (1− η)
g′(1− uh

t − nh
t )

λt(1− τn
t )

− η
1− ρx

1− τn
t

(
Ξt+1|t(1− τn

t+1)
γ

q(θt+1)

)
+ η(1− ρx)

(
Ξt+1|t

γ

q(θt+1)

)
. (50)

Finally, because this is a deterministic environment, combine the terms on the last line to arrive at

wt = η(f(kt)− rtkt) + (1− η)
g′(1− uh

t − nh
t )

λt(1− τn
t )

+ η(1− ρx)Ξt+1|t
γ

q(θt+1)

[
τn
t+1 − τn

t

1− τn
t

]
, (51)

which is expression (14) in the main text, given that λt = u′(ct). Note that if τn
t+1 = τn

t = τn, the

last two terms cancel with each other and the wage collapses to a simple static split,

wt = η(f(kt)− rtkt) + (1− η)
g′(1− uh

t − nh
t )

λt(1− τn)
. (52)
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C Social Planner Problem

We prove the efficiency condition presented in Proposition 1. The social planner’s problem is

max
ct,ut,nt,vt,kt,Kt+1

∞∑
t=0

βt [u(ct) + g(1− nt − ut)] (53)

subject to the sequences of resource constraints,

ct + gt +Kt+1 − (1− δ)Kt + γvt = ntf(kt), (54)

law of motion for the employment stock,

nt = (1− ρx)nt−1 +m(ut, vt), (55)

and relationship between match-level capital and aggregate capital,

Kt = ntkt. (56)

Let λ1
t , λ

2
t , and λ3

t be the sequences of Lagrange multipliers on these constraints, respectively.

The first order conditions with respect to ct, ut, nt, vt, kt, and Kt+1, respectively, are

u′(ct)− λ1
t = 0, (57)

−g′(1− nt − ut) + λ2
tmu(ut, vt) = 0, (58)

−g′(1− nt − ut) + λ1
t f(kt)− λ2

t + β(1− ρx)λ2
t+1 + λ3

tkt = 0, (59)

−γλ1
t + λ2

tmv(ut, vt) = 0, (60)

ntλ
1
t f

′(kt) + ntλ
3
t = 0, (61)

and

−λ1
t + β(1− δ)λ1

t+1 − βλ3
t+1 = 0. (62)

Because we are concerned only with the long-run Ramsey equilibrium, impose deterministic steady

state on conditions (57) through (62). Taking the ratio of equations (58) and (60) and then

substituting equation (57) along with the fact that, due to the Cobb-Douglas matching technology,
mu(ut,vt)
mv(ut,vt)

= θt
ξu

1−ξu
, into the resulting expression, we obtain the following expression for steady state

efficiency in the search labor market
g′(1− n− u)

u′(c)
= γθ

ξu
1− ξu

(63)

which is equation (20) in the text.

Next, solving equation (61) for λ3
t , substituting the resulting expression into equation (62) and

imposing steady state yields the following expression for efficiency along the capital accumulation

margin
1
β
− 1 + δ = f ′(k), (64)

which is equation (21) in the text.
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D Derivation of Implementability Constraint

The derivation of the implementability constraint follows that laid out in Lucas and Stokey (1983)

and Chari and Kehoe (1999). The derivation presented here nests that for the both the pseudo-

LFP model and the LFP model — obtaining the implementability constraint for the latter from

the former requires setting the shadow value on the exogenous labor-force size restriction to zero,

as has been discussed in the text.

From the pseudo-labor-force participation model, we will be able to use the household’s (pseudo)

perceived law of motion for employment,

nt = (1− ρx)nt−1 + p(θt)uh
t , (65)

the size restriction

nt + uh
t = l̄, (66)

and the pseudo-labor-force-participation condition

g′(1 − uh
t − nh

t )

p(θt)
+

φt

p(θt)
= u′(ct)(1 − τn

t )wt − g′(1 − uh
t − nh

t ) − φt + β(1 − ρx)Et

{
g′(1 − uh

t+1 − nh
t+1)

p(θt+1)
+

φt+1

p(θt+1)

}
. (67)

Start with the household flow budget constraint in equilibrium

ct +Kt+1 + bt = (1− τn
t )wtnt +

[
1 + (1− τk

t )(rt − δ)
]
Kt +Rtbt−1 + (1− τd)dt. (68)

Multiply by βtu′(ct) and sum over dates and states starting from t = 0,

∞∑
t=0

βtu′(ct)ct +
∞∑

t=0

βtu′(ct)Kt+1 +
∞∑

t=0

βtu′(ct)bt =
∞∑

t=0

βtu′(ct)(1− τn
t )wtnt

+
∞∑

t=0

βtu′(ct)
[
1 + (1− τk

t )(rt − δ)
]
Kt +

∞∑
t=0

βtu′(ct)Rtbt−1 +
∞∑

t=0

βtu′(ct)(1− τd)dt.

Use the household’s bond-demand condition, u′(ct) = βu′(ct+1)Rt+1, to substitute for u′(ct) in the

term on the left-hand-side involving bt,
∞∑

t=0

βtu′(ct)ct +
∞∑

t=0

βtu′(ct)Kt+1 +
∞∑

t=0

βt+1u′(ct+1)Rt+1bt =
∞∑

t=0

βtu′(ct)(1− τn
t )wtnt

+
∞∑

t=0

βtu′(ct)
[
1 + (1− τk

t )(rt − δ)
]
Kt +

∞∑
t=0

βtu′(ct)Rtbt−1 +
∞∑

t=0

βtu′(ct)(1− τd)dt.

Canceling terms in the third summation on the left hand side with the third summation on the

right hand side leaves only the time-zero bond position,
∞∑

t=0

βtu′(ct)ct +
∞∑

t=0

βtu′(ct)Kt+1 =
∞∑

t=0

βtu′(ct)(1− τn
t )wtnt

+
∞∑

t=0

βtu′(ct)
[
1 + (1− τk

t )(rt − δ)
]
Kt +

∞∑
t=0

βtu′(ct)(1− τd)dt + u′(c0)R0b−1.
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Next, use the capital supply condition u′(ct) = βu′(ct+1)
[
1 + (1− τk

t+1)(rt+1 − δ)
]
, to substitute

for u′(ct) in the second summation on the left hand side,

∞∑
t=0

βtu′(ct)ct +
∞∑

t=0

βt+1u′(ct+1)
[
1 + (1− τk

t+1)(rt+1 − δ)
]
Kt+1 =

∞∑
t=0

βtu′(ct)(1− τn
t )wtnt

+
∞∑

t=0

βtu′(ct)
[
1 + (1− τk

t )(rt − δ)
]
Kt +

∞∑
t=0

βtu′(ct)(1− τd)dt + u′(c0)R0b−1.

Canceling terms in the second summation on the left hand side with the second summation on the

right hand side leaves only the time-zero capital position,

∞∑
t=0

βtu′(ct)ct =
∞∑

t=0

βtu′(ct)(1−τn
t )wtnt+

∞∑
t=0

βtu′(ct)(1−τd)dt+u′(c0)
{
R0b−1 +

[
1 + (1− τk

0 )(r0 − δ)
]
K0

}
.

(69)

Next, use (67) to substitute for the sequence of terms u′(ct)(1 − τn
t )wt in the first summation

on the right hand side, which gives

∞∑
t=0

βtu′(ct)ct =
∞∑

t=0

βt
[
g′t
p(θt)

+
φt

p(θt)

]
nt +

∞∑
t=0

βt [g′t + φt
]
nt

− (1− ρx)
∞∑

t=0

βt+1

[
g′t+1

p(θt+1)
+

φt+1

p(θt+1)

]
nt +

∞∑
t=0

βtu′(ct)(1− τd)dt

+ u′(c0)
{
R0b−1 +

[
1 + (1− τk

0 )(r0 − δ)
]
K0

}
.

To further conserve on notation, we now use g′t to stand for g′(1− uh
t − nh

t ).

Next, use nt = (1− ρx)nt−1 + p(θt)uh
t to substitute for the sequence of nt terms that appear in

the first summation on the right hand side, which gives

∞∑
t=0

βtu′(ct)ct = (1− ρx)
∞∑

t=0

βt
[
g′t
p(θt)

+
φt

p(θt)

]
nt−1

+
∞∑

t=0

βt
[
g′t
p(θt)

+
φt

p(θt)

]
p(θt)uh

t +
∞∑

t=0

βt [g′t + φt
]
nt − (1− ρx)

∞∑
t=0

βt+1

[
g′t+1

p(θt+1)
+

φt+1

p(θt+1)

]
nt

+
∞∑

t=0

βtu′(ct)(1− τd)dt + u′(c0)
{
R0b−1 +

[
1 + (1− τk

0 )(r0 − δ)
]
K0

}
.

The first summation on the right hand side cancels with the fourth summation on the right hand

side, leaving only the time-zero term:

∞∑
t=0

βtu′(ct)ct =
∞∑

t=0

βt
[
g′t
p(θt)

+
φt

p(θt)

]
p(θt)uh

t +
∞∑

t=0

βt [g′t + φt
]
nt

+
∞∑

t=0

βtu′(ct)(1− τd)dt + u′(c0)
{
R0b−1 +

[
1 + (1− τk

0 )(r0 − δ)
]
K0

}
+ (1− ρx)

[
g′0
p(θ0)

+
φ0

p(θ0)

]
n−1.

30



Expanding and rearranging the first summation on the right-hand-side,

∞∑
t=0

βtu′(ct)ct =
∞∑

t=0

βt [g′t + φt
]
uh

t +
∞∑

t=0

βt [g′t + φt
]
nt

+
∞∑

t=0

βtu′(ct)(1− τd)dt + u′(c0)
{
R0b−1 +

[
1 + (1− τk

0 )(r0 − δ)
]
K0

}
+ (1− ρx)

[
g′0
p(θ0)

+
φ0

p(θ0)

]
n−1.

Finally, regrouping some terms, we have the present-value implementability constraint

∞∑
t=0

βt
{
u′(ct)ct −

[
g′(1− uh

t − nt) + φt

]
(nt + uh

t )− u′(ct)(1− τd)dt

}
= A0, (70)

where

A0 ≡ u′(c0)
{
R0b−1 +

[
1 + (1− τk

0 )(r0 − δ)
]
K0

}
+ (1− ρx)

[
g′0
p(θ0)

+
φ0

p(θ0)

]
n−1. (71)
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E Proof of Propositions 2 and 3

We prove Propositions 2 and 3 in several steps. First, we describe the Ψ(·) function (equation (23),

which is key for the results. We then construct the Ramsey first-order conditions and consider the

deterministic steady state. Using these first-order conditions, we show that a zero capital income

tax is optimal if the derivative of Ψ(·) with respect to the capital stock is zero (this was the idea

of the discussion in the text following Proposition 3). Once this is established, the last steps are

to show that the derivative of Ψ(·) with respect to the capital stock is indeed zero for each of the

cases described in Propositions 2 and 3.

E.1 The Ψ(·) function

Three conditions describe thE period-t equilibrium of the labor market: the vacancy-creation con-

dition
γ

q(θt)
= f(kt)− wt − rtkt + (1− ρx)

[
Ξt+1|t

γ

q(θt+1)

]
, (72)

the Nash wage equation

wt = η(f(kt)− rtkt) + (1− η)
g′(1− uh

t − nh
t )

λt(1− τn
t )

+ η(1− ρx)Ξt+1|t
γ

q(θt+1)

[
τn
t+1 − τn

t

1− τn
t

]
, (73)

and the pseudo-LFP condition

g′(1 − uh
t − nh

t )

p(θt)
+

φt

p(θt)
= u′(ct)(1 − τn

t )wt − g′(1 − uh
t − nh

t ) − φt + β(1 − ρx)

[
g′(1 − uh

t+1 − nh
t+1)

p(θt+1)
+

φt+1

p(θt+1)

]
. (74)

We summarize the labor-market equilibrium by the function Ψ(·). To construct Ψ(·), divide

equation (72) by equation (74), observe that θ = p(θ)/q(θ) because of constant-returns matching,

and define the following two terms:

∆1
t ≡ (1−η)

(
f(kt)− f ′(kt)kt −

g′(1− ut − nt) + φt

u′(ct)(1− τn
t )

)
+(1−ρx)Ξt+1|t

[
η
τn
t − τn

t+1

1− τn
t

+
γ

q(θt+1)

]
(75)

∆2
t ≡ η

(
f(kt)− f ′(kt)kt −

g′(1− ut − nt) + φt

u′(ct)(1− τn
t )

)
(76)

+ (1− ρx)Ξt+1|t

[
η
τn
t − τn

t+1

1− τn
t

+
g′(1− ut+1 − nt+1) + φt+1

u′(ct+1)

]
. (77)

Also, impose the market clearing conditions rt = f ′(kt) and Kt = ntkt to substitute out rt and Kt,

and recognize that the equilibrium value of the discount factor is Ξt+1|t = βu′(ct+1)
u′(ct)

. We then define

Ψ(ct, ct+1, ut, ut+1, nt, nt+1, vt, vt+1, kt, τ
n
t , τ

n
t+1) as

Ψ(·) =
(
g′(1− ut − nt) + φt

u′(ct)

)
∆1

t

∆2
t

− (1− τn
t )γθt. (78)
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This function captures (72), (73), and (74) because we obtained it by first dividing (72) by (74),

and decomposing (73) into the ∆1
t and ∆2

t functions, each of which is a component of Ψ(·).
As noted in the discussion following Proposition 2, if households optimally choose their partic-

ipation rate (which implies φt = 0 ∀t) and the Hosios parametrization η = ξu holds, Ψ(·) takes a

much simpler form

Ψ(·) =
g′(1− nt − ut)

u′(ct)
− (1− τn

t )γθt
ξu

1− ξu
, (79)

which is independent of the capital stock. We prove this below.

E.2 Ramsey First-Order Conditions

The Ramsey government’s problem is

max
ct,ut,nt,vt,Kt+1,kt,τn

t

∞∑
t=0

βt [u(ct) + g(1− nt − ut)] (80)

subject to the PVIC

E0

∞∑
t=0

βt
{
u′(ct)ct −

[
g′(1− ut − nt) + φt

]
(nt + ut)− u′(ct)(1− τd)dt

}
= A0, (81)

and the sequences of constraints

ct + gt +Kt+1 − (1− δ)Kt + γvt = ntf(kt), (82)

nt = (1− ρx)nt−1 +m(ut, vt), (83)

Ψ(ct, ct+1, ut, ut+1, nt, nt+1, vt, vt+1, kt, τ
n
t , τ

n
t+1) = 0, (84)

Kt = ntkt, (85)

and, if participation in the decentralized economy is fixed at l̄,

l̄ = nt + ut. (86)

Let λ1 be the Lagrange multiplier on the PVIC, and λ2
t , λ

3
t , λ

4
t , λ

5
t , and λ6

t be the multipliers on

the other constraints, respectively. In the following, recall that we are considering fixed τd = 1.

The first-order-conditions with respect to, ct, ut, nt, vt, Kt+1, kt, and τn
t are, respectively:

u′(ct)− λ1
((
u′′(ct)ct + u′(ct)

)
+ u′′(ct)(1− τd)dt

)
− λ2

t −
1
β
λ4

t−1

∂Ψt−1

∂ct
− λ4

t

∂Ψt

∂ct
= 0 (87)

−g′t − λ1 (g′′t − (g′t + φt)
)
+ λ3

tmu(ut, vt)−
1
β
λ4

t−1

∂Ψt−1

∂ut
− λ4

t

∂Ψt

∂ut
+ λ6

t = 0 (88)

−g′t − λ1 (g′′t − (g′t + φt)
)
+ λ2

t f(kt) (89)

−λ3
t + β(1− ρx)λ3

t+1 −
1
β
λ4

t−1

∂Ψt−1

∂nt
− λ4

t

∂Ψt

∂nt
+ λ5

tkt + λ6
t = 0
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−γλ2
t + λ3

tmv(ut, vt)−
1
β
λ4

t−1

∂Ψt−1

∂vt
− λ4

t

∂Ψt

∂vt
= 0 (90)

−λ2
t + β(1− δ)λ2

t+1 − βλ5
t+1 = 0 (91)

−ntf
′(kt)λ2

t − λ4
t

∂Ψt

∂kt
+ ntλ

5
t = 0 (92)

− 1
β
λ4

t−1

∂Ψt−1

∂τn
t

− λ4
t

∂Ψt

∂τn
t

= 0. (93)

The partial derivatives ∂Ψt−1

∂ct
, ∂Ψt

∂ct
, ∂Ψt−1

∂ut
, ∂Ψt

∂ut
, ∂Ψt−1

∂nt
, ∂Ψt

∂nt
, ∂Ψt−1

∂vt
, ∂Ψt

∂vt
, ∂Ψt−1

∂τn
t

, ∂Ψt
∂τn

t
, and ∂Ψt

∂kt
are all

defined in the final section of this appendix.

E.3 ∂Ψ(·)
∂kt

= 0 and Zero Capital Tax

We now establish that ∂Ψ(·)
∂kt

= 0 is a sufficient condition for the optimality of a zero long-run

capital tax. The interpretation of the condition ∂Ψ(·)
∂kt

= 0 is that the labor-market equilibrium is

independent of the capital stock.

Using the steady state version of (92) to solve for λ5 and inserting the resulting expression into

(91) yields

λ2
(

1
β
− 1 + δ + f ′(k)

)
− 1
n
λ4∂Ψ
∂k

= 0. (94)

From the household’s steady-state Euler equation for capital, 1 = β
[
1 + (1− τk)(r − δ)

]
, we can

replace the term in parentheses in the previous expression to get

λ2
(
τk(δ − f ′(k))

)
− 1
n
λ4∂Ψ
∂k

= 0. (95)

This last expression can be solved for the optimal capital tax,

τk =
1

n(δ − f ′(k))
λ4

λ2

∂Ψ
∂k

. (96)

Note that λ2 6= 0 because the resource constraint always binds given standard Inada conditions on

the consumption subutility function. Furthermore, the only circumstance under which λ4 = 0 is if

the labor market equilibrium achieves the constrained-efficient outcome — that is, if condition (20)

holds. It will be clear below that this is not the case in the Ramsey equilibrium because τn > 0.

Thus, equation (96) tells us that in the Ramsey equilibrium, the only circumstance under which

τk = 0 will be if ∂Ψ
∂k = 0. This concludes the first part of the proof.
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E.4 Conditions Under Which ∂Ψ(·)
∂k

= 0

We turn now to the particular conditions, outlined in propositions 2 and 3, to show that for each

of the cases described there, ∂Ψ
∂k = 0, hence τk = 0 in the Ramsey steady state.

E.4.1 Proposition 2

In order to conclude our proof of proposition 2, begin by explicitly writing out the ∆1
t and ∆2

t

terms in the definition of Ψ(·):

Ψ(·) =
g′t + φt

u′(ct)

f(kt)− wt − f ′(kt)kt + (1− ρx)Ξt+1|t
γ

q(θt+1)

(1− τn
t )wt + g′t+φt

u′(ct)
+ (1− ρx)Ξt+1|t

1
p(θt+1)

g′t+1+φt+1

u′(ct+1)

− γθt. (97)

The strategy is to first guess that, as long as the Hosios condition holds and labor force participation

is efficient in the decentralized economy, Ψ(·) reduces to:

Ψ(·) =
g′(1− ut − nt)

u′(ct)
− (1− τn

t )
ξu

1− ξu
γθt. (98)

We now proceed to verify that this guess is indeed correct under the conditions outlined in propo-

sition 2.

In order for equation (97) to coincide with equation (98), it must be that the second fraction

to the right of the equals sign satisfies the following condition

f(kt)− wt − f ′(kt)kt + (1− ρx)Ξt+1|t
γ

q(θt+1)

(1− τn
t )wt + g′t+φt

u′(ct)
+ (1− ρx)Ξt+1|t

1
p(θt+1)

g′t+1+φt+1

u′(ct+1)

=
1

1− τn

1− ξu
ξu

(99)

Solving this expression for wt yields

wt = ξu

(
f(kt)− f ′(kt)kt + (1− ρx)Ξt+1|t

γ

q(θt+1)

)
(100)

+(1− ξu)
1

1− τn
t

(
−g

′
t + φt

u′(ct)
+ (1− ρx)Ξt+1|t

1
p(θt+1)

g′t+1 + φt

u′(ct)

)
(101)

Note that the first term in parentheses is Jt + wt while the second term in parentheses is Wt −
Ut− (1− τn

t )wt− φt

u′(ct)
+(1−ρx)Ξt+1|t

1
q(θt+1)

φt+1

u′(ct+1) . Inserting these into the immediately previous

equation above and rearranging yields

wt = ξuJt + ξuwt − (1− ξu)
1

1− τn
t

(Wt −Ut) + (1− ξu)wt (102)

− φt

u′(ct)
+ (1− ρx)Ξt+1|t

1
q(θt+1)

φt+1

u′(ct+1)
. (103)

Eliminating the wt term reduces this to

0 = ξuJt − (1− ξu)
1

1− τn
t

(Wt −Ut)−
φt

u′(ct)
+ (1− ρx)Ξt+1|t

1
q(θt+1)

φt+1

u′(ct+1)
(104)

0 =
1

1− τn
t

(Wt −Ut)
(
ξu

1− η

η
− (1− ξu)

)
− φt

u′(ct)
+ (1− ρx)Ξt+1|t

1
q(θt+1)

φt+1

u′(ct+1)
, (105)

35



where in the second step we have used the Nash sharing rule, ηJt = 1
1−τn

t
(1−η)(Wt−Ut). Clearly,

this equation is satisfied as long as the Hosios condition holds (η = ξu) and labor force participation

is set optimally (which implied φ = 0). In this case, the we have verified the original conjecture

that Ψ(·) collapses to expression (98).

It follows that equation (98) is not a function of the capital stock, so that ∂Ψt
∂kt

= 0. This, along

with equation (96) in the previous section, tells us that τk = 0 in the Ramsey equilibrium when

(η = ξu) and φ = 0. This completes the proof of proposition 2.

E.4.2 Proposition 3 (Case One)

Now consider the cases presented in Proposition 3. For the special case in which g′(l̄) = −φ, the

labor market constraint reduces to

Ψ(·) = −(1− τn
t )γθt (106)

It is clear that ∂Ψt
∂kt

= 0 in the special case in which the subutility function over leisure is exogenously

parameterized in such a way that g′(l̄) = −φ. Furthermore, imposing steady state on the Ramsey

first order condition on τn in this special case yields

−λ4γθ = 0. (107)

It follows that λ4 = 0. In other words, the labor market does not impose any constraint on the

Ramsey planner when setting optimal policy.

This proves special case one in proposition 3 and provides analytical support to our contention

that the labor tax acts as a lump sum instrument in this special case.

E.4.3 Proposition 3 (Case Two)

For the special case in which ρx = 1, we have that ∆1
t = ∆2

t , so that the labor market constraint

reduces to

Ψ(·) =
(
g′(1− ut − nt) + φt

u′(ct)

)
1− η

η
− (1− τn

t )γθt (108)

In the special case in which matches dissolve after every period, so that ρx = 1, we have that
∂Ψt
∂kt

= 0. This proves special case two in proposition 3.
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E.5 Partial Derivatives

In this subsection, we define the partial derivatives ∂Ψt−1

∂ct
, ∂Ψt

∂ct
, ∂Ψt−1

∂ut
, ∂Ψt

∂ut
, ∂Ψt−1

∂nt
, ∂Ψt

∂nt
, ∂Ψt−1

∂vt
, ∂Ψt

∂vt
,

∂Ψt−1

∂τn
t

, ∂Ψt
∂τn

t
, and ∂Ψt

∂kt
in the Ramsey first order conditions.

∂Ψt−1

∂ct
=
g′t−1 + φt−1

u′(ct−1)

 ∂Ψ1,t−1

∂ct

∆2
t−1

+
∆1

t−1

∆2
t−1

∂∆2
t−1

∂ct

∆2
t−1

 (109)

where:
∂∆1

t−1

∂ct
= (1− ρx)β

u′′(ct)
u′(ct−1)

(
η
τt−1 − τt
1− τt−1

+ γp

(
vt

ut

))
(110)

∂∆2
t−1

∂ct
= (1− ρx)β

(
u′′(ct)
u′(ct−1)

(
η
τt−1 − τt
1− τt−1

+
g′t + φt

u′(ct)

)
+

u′(ct)
u′(ct−1)

(
g′t + φt

u′(ct)
u′′(ct)
u′(ct)

))
(111)

∂Ψt

∂ct
=
g′t + φt

u′(ct)
u′′(ct)
u′(ct)

∆1
t

∆2
t

+
g′t + φt

u′(ct)

 ∂∆1
t

∂ct

∆2
t

+
∆1

t

∆2
t

∂∆2
t

∂ct

∆2
t

 (112)

where

∂∆1
t

∂ct
= (1− η)

g′t + φt

u′(ct)(1− τn
t )
u′′(ct)
u′(ct)

− (1− ρx)β
u′(ct+1)
u′(ct)

u′′(ct)
u′(ct)

(
η
τn
t − τn

t+1

1− τn
t−1

+ γp

(
vt+1

ut+1

))
(113)

∂∆2
t

∂ct
= η

g′t + φt

u′(ct)(1− τn
t )
u′′(ct)
u′(ct)

− (1− ρx)β
u′(ct+1)
u′(ct)

u′′(ct)
u′(ct)

(
η
τn
t − τn

t+1

1− τn
t−1

+
g′t+1 + φt+1

u′(ct+1)

)
(114)

∂Ψt−1

∂nt
=
g′t−1 + φt−1

u′(ct−1)

∆1
t−1

∆2
t−1

(1− ρx)β g′′t
u′(ct)

u′(ct)
u′(ct−1)

∆2
t−1

 (115)

∂Ψt

∂nt
=
g′′t + φt

u′(ct)
∆1

t

∆2
t

+
g′t + φt

u′(ct)

(1− η) g′′t
u′(ct)(1−τn

t )

∆2
t

+
∆1

t

∆2
t

η
g′′t

u′(ct)(1−τn
t )

∆2
t

 (116)

∂Ψt−1

∂ut
=
g′t−1 + φt−1

u′(ct−1)

−(1− ρx)β u′(ct)
u′(ct−1)γp

′
(

vt
ut

)
vt

u2
t

∆2
t−1

+
∆1

t−1

∆2
t−1

(1− ρx)β g′′t
u′(ct)

u′(ct)
u′(ct−1)

∆2
t−1

 (117)

∂Ψt

∂ut
=
g′′t + φt

u′(ct)
∆1

t

∆2
t

+
g′t + φt

u′(ct)

(1− η) g′′t
u′(ct)(1−τn

t )

∆2
t

+
∆1

t

∆2
t

η
g′′t

u′(ct)(1−τn
t )

∆2
t

+ (1− τn
t )γ

vt

ut

1
ut

(118)

∂Ψt−1

∂vt
=
g′t−1 + φt−1

u′(ct−1)

(1− ρx)β u′(ct)
u′(ct−1)γp

′
(

vt
ut

)
1
ut

∆2
t−1

 (119)

∂Ψt

∂vt
=
g′t + φt

u′(ct)
∆1

t

∆2
t

− (1− τn
t )γ

1
ut

(120)
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∂Ψt

∂kt
=
g′t + φt

u′(ct)
∆1

t

∆2
t

− g′t + φt

u′(ct)

(
(1− η)fkk(kt, )

Ψ2,t
+

Ψ1,t

Ψ2,t

ηfkk(kt, )
∆2

t

)
(121)

∂Ψt−1

∂τn
t

= −
g′t−1 + φt−1

u′(ct−1)

(1− ρx)β u′(ct)
u′(ct−1)η

1
1−τn

t

∆2
t−1

+
∆1

t−1

∆2
t−1

(1− ρx)β u′(ct)
u′(ct−1)η

1
1−τn

t

∆2
t−1

 (122)

∂Ψt

∂τn
t

=
g′t + φt

u′(ct)
Ψ1,t

Ψ2,t
+
g′t + φt

u′(ct)

η g′t+φt

u′(ct)(1−τn
t )2

+ (1− ρx)β u′(ct)
u′(ct−1)η

1−τn
t+1

(1−τn
t )2

∆2
t

 (123)

+
g′t + φt

u′(ct)

∆1
t

∆2
t

η
g′t+φt

u′(ct)(1−τn
t )2

+ (1− ρx)β u′(ct)
u′(ct−1)η

1−τn
t+1

(1−τn
t )2

∆2
t

+ γ
vt

ut
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