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Chapter 14 
Money and Monetary Policy in the 
Intertemporal Framework 
 
 
We have for the most part ignored the role of money and thus monetary policy in our 
study so far.  This is because the main issues we have been considering – in particular, 
the idea of optimal decision-making by representative agents, which lead to the 
benchmark consumption-leisure and consumption-savings optimality conditions – turn 
out to not require explicit consideration of money.   
 
Our lack of meaningful inclusion of “money” is also in part due to the fact that it has 
proven somewhat difficult to construct a simple framework for the three distinct roles 
that “money” plays in modern society.  For centuries (or perhaps millienia), those three 
distinct roles have been thought to be:   
 

1) A medium of exchange (which circumvents the problems of barter exchange, 
which is nearly impossible in developed economies) 
 

2) A unit of account (as an example, if you spend U.S. dollars at a U.S. store, the 
price tags will be denoted in numbers of U.S. dollars, rather than in, say, numbers 
of ballpoint pens) 
 

3) A store of value (if a piece of fruit were used to make payments, one piece of fruit 
would obviously decay very quick, within days or weeks at best – which implies 
that its value erodes quickly;  instead, one piece of fibrous and secure paper that 
displays George Washington’s portrait is likely to last for decades) 

 
Despite the theoretical difficulty of incorporating the “hows” and “whys” of particular 
societies or countries or eras settling on a commonly understood definition of “money,” it 
is virtually entirely about money around which the divide between the RBC school of 
thought and the New Keynesian school of thought emerges.  To illustrate the fundamental 
difference between the two theories and hence the fundamental split in modern 
macroeconomic theory, we need to develop a concept of money market equilibrium, 
which in turn requires both money demand  and money supply.   We will take a shortcut, 
but widely-used, approach, which is the money-in-the-utility (MIU) function 
framework to generate demand for money.   
 
Simply put, the MIU approach simply inserts (real) money – that is, the purchasing power 
of monetary units – as an argument to the representative consumer’s utility function.  
Before getting to the economics of and short-run and long-run policy recommendations 
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that emerge from the MIU framework, though, we refresh ourselves on the linkages 
between monetary markets and bond markets. 
 

Government Bond Market 
 
You should already be familiar with the concepts briefly presented in this section.  But 
because the connection between monetary markets and bond markets is crucial for 
understanding how monetary policy operates, a brief recap seems appropriate.   
 
We assume that the bonds are all government bonds.103   In “conventional” times, the 
Federal Reserve implements its policy decisions via open market purchases or sales of 
U.S. government bonds.  Moreover, we assume all bonds are nominal bonds, meaning 
that each unit of a bond pays back a fixed amount of currency.   
 
We will speak of a single government bond market within a country, even though there 
are many different types of bonds issued by governments, distinguished primarily by 
their maturity length and face value.  A bond’s maturity length is the time from issuance 
until the full value of the bond is repaid to the bond-holder, while a bond’s face value is 
the full value that is repaid upon maturity.  For example, the U.S. government issues one-
month Treasury bills, three-month Treasury bills, six-month Treasury bills, two-year 
Treasury notes, three-year Treasury notes, five-year Treasury notes, and ten-year 
Treasury notes of various face values.104 
 
Bonds are simply loans, a point that is often misunderstood.  Regardless of a bond’s 
maturity length and face value, a government bond is simply a loan that a bond-holder 
provides to the government to be repaid at a later date with interest.  The amount to be 
repaid at the pre-specified date is the bond’s face value. 
 
Because the face value is not repaid until some future time period, the amount that a 
bond-holder would be willing to pay in the current period for a bond of face value FV 
dollars is something less than FV dollars.  The reason for this is simply the time-
discounting of future values.  For example, $100 one year from now is likely worth less 
than $100 to you right now – in other words, you are likely to be willing to accept 
something less than $100 at this instant in lieu of receiving nothing now and $100 one 
year from today. 
 
Because of time-discounting, the period-t price (denoted b

tP ) of a one-period maturity 

bond is related to its face value FVt+1 and the nominal interest rate ti , which represents 

                                                 
103 There exist also corporate bonds (bonds issued by companies) and hence markets for corporate bonds, 
which are important markets.  However, for standard, or “conventional,” monetary policy purposes, it is 
fairly irrelevant which types of bonds exist, so we will ignore corporate bond markets. 
104 There are also many other maturity lengths of U.S. government bonds. 
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the interest component between period t and period t+1.  The relationship between these 
three objects is 
 

 1

1
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t
t
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P

i
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
. 

 
The way this expression is written makes it seem that it defines the price of a bond.  But a 
common interpretation of this expression is that it instead defines the nominal interest 
rate it, because at any point in time a bond’s face value and the amount bond demanders 
are willing to pay are known.  Thus, knowledge of b

tP  and FVt+1 can be thought of as 

defining ti . 

 
Algebraically, we can emphasize this relationship by simply re-arranging the expression 
above to isolate for the nominal interest rate, which is 
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These two equations are obviously equivalent to each other. 
 
We also include three other simplifying points for the sake of ease of the ensuing 
analysis. 
 
 

1. The face value is always equal to FV = 1, hence we can drop the time subscript 
and the tedious-to-write FV. 
 

2. In practice, there are two main types of bonds – coupon bonds and zero-coupon 
bonds.  A coupon bond is one that makes interest payments (called coupon 
payments) to the bond-holder at specified times before a final payment of the face 
value at the maturity date, while a zero-coupon bond offers no intermediate 
payments before the payment of the face value at the maturity date.  For 
convenience, we will suppose that all bonds are zero-coupon bonds because it 
does not matter for either the short-run or long-run analysis. 
 

3. Nominal bond repayments are always fully repaid on time. 
 

The last point says the government never defaults on its nominal bond obligations, which, 
if we zoom in on the U.S. government, is true. 
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Money-in-the-Utility (MIU) Function and Money Demand 
 
Now we begin with the infinite-horizon framework.  The particular financial asset 
application when we first considered the infinite-horizon framework was stock-market 
pricing.  But a broader theme that emerges from the previous analysis is about asset 
pricing in general, regardless of the particular type of financial asset under consideration.  
In the expanded infinite-period framework here, there will be three distinct types of 
assets:  stocks, money, and bonds.  Figure 79 portrays this richer class of financial assets 
and the timing of events.   
 
Mathematically, we augment the representative consumer’s period-t utility function to 
now include money demand as an argument – in particular, the demanded quantity of 
money, which is the essence of the MIU model.  Suppose the representative consumer’s 
period-t utility function is 
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, 

 
in which M

t
D / P

t
 is the consumer’s demand for real money balances – that is, for the 

purchasing power that a given nominal demand M
t
D  holdings provides.  Overall, the 

real money demand argument is a stand-in for the various roles that money plays in 
different time periods, as described earlier.   
 
 
Because of the subjective discount factor (0,1)   (which indeed carries over from our 
earlier analysis of the infinite-period framework), the lifetime discounted utility from 
the perspective of the very beginning of period t can be stated as  
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the second line writes the present-value lifetime utility function compactly using the 

summation operator  .   
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Figure 79.  Timeline of events in infinite-period monetary framework. 
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During every time period, an optimal “rebalancing” amongst the three assets in the 
portfolio occurs.  This is described in the period-t budget constraint of the consumer,  
 
 1 11 ( )b

t t t t t t t t t t t
D D
t tPc P B M S a Y M B S D a          , 

 
in which, as in the basic asset-pricing framing, tP  is the nominal price of consumption, St 

is the nominal price of a one unit of stock in period t, and Dt is the nominal dividend per 
share in period t.  Notice the timing of the budget constraint:  in period t, the consumer 
chooses nominal money holdings to carry into period t+1.105  (And see also Figure 79.)   
 
In turn is implied that the period t+1 flow budget constraint is 
 

1 1 1 1 1 1 1 1 11 ( )b
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the period t+2 flow budget constraint is  
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and so on for periods t+3, t+4, t+5, .... 

 
 

Optimal Choice 
 

The sequential Lagrange problem stated in nominal terms is 
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105 Mechanically, we know this because it is 

D
tM  , rather than 1

D
tM   , that appears on the left-hand-side of 

the budget constraint, and the left-hand-side represents “outlays” in period t.  
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which should look familiar to you – it is simply an extension of the sequential Lagrange 
function in our earlier study of stock-market pricing. 
 
The first-order conditions with respect to ct , at, Bt, and D

tM  are, respectively, 
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and 
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The first condition states the usual result that the marginal utility of consumption equals 
the Lagrange multiplier (scaled by the price level tP ).  The second first-order condition is 

our familiar stock-pricing equation.  The third first-order condition is that on bond 
holdings.  In the fourth first-order condition, the 1/Pt term arises because each individual 
can choose his/her nominal money holdings, but takes the aggregate price level Pt as 
given.  Because real, not nominal, money demand is the second argument of the utility 
function, the chain rule is required, which generates the 1/Pt term. 
 
These four first-order conditions taken together generate many rich insights about 
linkages between bonds markets and stock markets, between bond markets and monetary 
markets, and are the foundation of possible ideological divides between whether or not 
changes in monetary policy affect either short-run macroeconomic conditions or long-run 
macroeconomic conditions or both.  The following sections describe these insights in 
turn.  As you will see, we will go back and forth between “macroeconomic theory” and 
“finance theory” – given the richness of the framework, the “intersection” between the 
two apparently different strands of thought turns out to be a very clear intersection. 
 
 

Pricing Kernel and Asset Prices 
 
Delve back into a bit of finance theory, we can rearrange the first-order condition on 
bond holdings to get 
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This already sheds a lot of light on the intersection of macro and finance!  Recall from 
our study of stock-pricing that 1 /t t   was defined as the “pricing kernel” of the 

economy. 
 
Here it is! 
 
 
 
The price of a nominal bond equals the pricing kernel times one.106   
 
Or, stated from the opposite perspective, the pricing kernel of an economy equals 
the price of a short-term riskless nominal bond.107   
 
 
 
Note that the above b

tP  expression is of the same general form as the stock-pricing 

equation we encountered earlier – the price of an asset ( b
tP ) depends on a pricing kernel 

and a future payoff (which is simply FV = 1).  Bonds are thus priced using the general 
type of asset-pricing equation we used to price stocks.   
 
Continuing, the first-order condition on ta  gives us 

 

 1
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which is our usual stock price condition.  From what we now know, we can alternatively 
express the stock-price as 
 
 1 1( )b

t t t tS P S D   , 

 
which explicitly demonstrates a crucial linkage between bond prices and stock prices.  
Stock prices can thus be said to be keyed (partially) off of bonds prices.   
 

                                                 
106 The “one” here is simply the payoff of the nominal bond in our model – that is, we assumed that the face 
value, hence the payoff, of the bond is FV = 1.   
107 The “riskless” component was mentioned above, so we can think of these nominal bonds as U.S. 
government nominal bonds. 
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The big-picture, finance-theoretic, lesson to take away here is that asset-pricing equations 
invariably have the same general form, regardless of what specific type of asset is being 
considered.  That general form is  
 
 
 price of asset in current period = (pricing kernel) x (asset-appropriate future returns)   

 
 
Fisher Equation 
 
We can obtain the exact Fisher equation as an implication of optimal choices in this 
model, rather than as a relationship which we so far have seemingly “assumed” to be 
true.   
 
To see this, begin with the last expression, 1 1( )b

t t t tS P S D   .  Divide this expression 

through by the nominal price level tP  (which is distinct from the nominal price of a bond 
b

tP ), to get 
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Next, on the right-hand-side, multiply and divide by 1 1/t tP P   (which is of course just 

multiplying by one, which is always a valid operation to conduct…) to arrive at 
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The real price of stock purchased in period t is /t tS P  (because it is divided by the 

current price level), while the real payoff in period t+1 of the stock purchased in period 
t+1 is 1 1 1( ) /t t tS D P    (because it is divided by the future price level).  The period-(t+1) 

real payoff divided by the period-t real price is defined as the real return on the asset – 
that is, it is the object we have heretofore been calling the real interest rate.108   
 
Letting tr  denote the real interest rate between period t and period t+1, we therefore have 

that 
  

                                                 
108 Stocks are considered to be “real” assets because their payoff is generally not fixed in currency terms, 
whereas bonds are considered to be “nominal” assets because their payoff is generally fixed in currency 
terms (non-indexed bonds, at least). 
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With this, we can write the previous expression as  
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Only one more step remains in obtaining the exact Fisher relation from first principles.  
To finish the algebra, note that, by construction and based on our definitions, 
1/ 1b

t tP i  , and 1 1/ 1t t tP P    .   

 
The previous expression can thus be re-written as 
 
 11 (1 )(1 )t t ti r      , 

 
which is the exact Fisher relation.   
 
The economic intuition behind the Fisher equation is that it links the returns available on 
nominal assets (nominal bonds) and the returns available on real assets (stocks).  The 
linkage is through inflation; once the nominal returns of bonds are adjusted by inflation, 
their returns on nominal bonds are exactly equal to the returns on stocks, provided 
financial markets are “operating well.”    
 
This type of idea – that, once returns are converted into comparable units, they are 
equalized when markets are behaving rationally – goes by the terminology of no-
arbitrage in finance theory.  No-arbitrage relationships are key building blocks of more 
advanced finance theory; we defer richer consideration of issues stemming from such 
relationships to a more advanced course on finance theory. 
 
The exact Fisher equation emerges naturally in any model featuring both nominal assets 
and any type of real asset, not just stocks.  This brings us back full circle to our initial 
study of the two-period consumption-savings model, in which we asserted the exact 
Fisher equation. 
 
 

Nominal Interest Rates and Money Demand 
 
Next, let’s consider how the nominal interest rate ti  affects macroeconomic conditions.  

So far, we have not exploited the information contained in the first-order conditions with 
respect to consumption or money holdings, but now we finally will. 
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Rewrite the first-order condition on nominal money holdings from above as 
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We know from the first-order condition on bond holdings that 1
b

t t tP   ; inserting this 

in the previous expression gives 
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Dividing through by t , 
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Next, we can use the first-order condition on consumption to replace the t tP  term on the 

left-hand-side, giving us 
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The term on the left-hand-side now is just the MRS between real money demand and 
consumption – i.e., it is the ratio of the marginal utility of (real) money to the marginal 
utility of consumption.   
 
As for the right-hand-side of this expression, because 1/(1 )b

t tP i  , it can be stated as  
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One final algebraic simplification gives us the consumption-money optimality 
condition 
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which states that the MRS between period-t real money and period-t consumption equals 
a function of the nominal interest rate at the representative agent’s optimal choice.  This 
optimality condition is completely analogous to the consumption-leisure optimality 
condition and the consumption-savings optimality condition with which we have become 
familiar.  The consumption-money optimality condition states that when consumers are 
making their optimal choices, they choose consumption and real money holdings in such 
a way as to equate their MRS between consumption and money demand to a function of 
the nominal interest rate. 
 
Except for interpretation, the indifference-curve/budget constraint diagram in Figure 80 
ought to look familiar by now. 
 
 

consumption

MD/P

slope = -i/(1+i)

optimal choice

  
Figure 80.  Consumption-money demand optimality condition. 

 

Also, as in, say, the consumption-leisure analysis, we can translate the optimal choices 
for any particular nominal interest rate i in the indifference curve/budget constraint 
diagram in Figure 80 to a market diagram.  Figure 81 traces the quantity of money 
demanded as a function of its price i.  To get from Figure 80 to Figure 81, conduct the 



Spring 2014 | © Sanjay K. Chugh 213 

 
 
 

following thought experiment:  successively lower the nominal interest rate i in Figure 
80.  Along the money demand axis, it seems to be the case that MD successively 
increases.  If this is true, this generates the clear downward-sloping portion of the money 
demand function in the money-market space of Figure 81.   
 
Continuing the thought experiment, suppose i is extremely small – for example, i = 
0.0125.  It is apparent from the consumption-money optimality condition that the budget 
line is extremely flat.  If i were to hit exactly zero or turn strictly negative, the 
optimality condition would make no sense at all.  Because of the strict equality sign in 
the consumption-money optimality condition, it would imply that the MRS between 
consumption and real money demand was negative, which violates (at least 99.9999% of 
the time…) basic microeconomic principles.  Casual inspection of Figure 80, which has 
the “usually shaped indifference curves” that are strictly convex to the origin, also 
visually confirms this. 
 
 
 

i

M/P

MS

MD

ZLB region

MS (post-Great Recession)

 

Figure 81.  The money market.  Money demand (MD) increases as nominal interest rate i decreases.  
Nominal interest rates can never fall below zero. 

 
Hence emerges the “zero lower bound” (ZLB) restriction on nominal interest rates, 
which states exactly what we concluded:  nominal interest rates can never fall below 
zero.  The ZLB restriction is clear in money market space in Figure 81.        
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Functional Form for Preferences 
 
To facilitate both the short-run and long-run monetary policy analyze, as well as to 
formalize what was “casually” concluded immediately above, let’s specialize our utility 
function to  
 

 , ln lnt t
t t

D D
t tM M

u c c
P P
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 
. 

 
This functional form displays strictly convex to the origin indifference curves in the 
indifference curve space of Figure 80.  And none of the policy conclusions we reach 
below depend on this particular functional form, but it allows for ease of algebraic 
manipulations to come.  
 
The marginal utility functions associated with this utility form are obviously 
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. 109   This means that the period-t 

consumption-money optimality condition can be written as 
 

 
/ 1

t t

t
D
t t

c i

M P i



, 

 
which is diagrammable in Figure 80.  Or, recasting it in money-market space,  
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which is diagrammable in Figure 81.   
 
With all of this now in place, we are ready to examine two long-standing questions in 
monetary analysis, one a short-run issue, the other a long-run issue.  Both the long-run 
and short-run issues center around the question of whether or not monetary policy is 
neutral.   
 
Monetary policy is said to be neutral with respect to the economy if changes in 
monetary policy do not affect real aggregate outcomes in the economy.  
Symmetrically, monetary policy is said to be non-neutral with respect to the economy if 
changes in monetary policy do affect real aggregate outcomes in the economy.   

                                                 
109 Verify this for yourself.  Also note well that there is no use of the chain rule here – the chain rule was 
already used to obtain the consumption-money optimality condition, irrespective of the precise utility 
functional form. 
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Monetary Policy I:  The Short-Run  
 
To consider neutrality vs. non-neutrality in the short run, we first have to define more 
rigorously what the “short run” is, and then look at the ordering of events within that 
“short run.” 
 
A natural interpretaion of “short run” in our multi-period model is one period of time, 
which we label “period t.” 
 
What about the “ordering of events” within that one period of time?  Figure 82 zooms in 
on period t and diagrams one example.  The two main aspects around which the short-run 
neutrality debate revolves are whether or not an “unexpected change” in Federal Reserve 
monetary has occurred and the fact that money markets almost universally clear 
quickly.110  Figure 82 contains both of these aspects. 
 
Suppose that a monetary policy “shock” has occurred.  For the sake of concreteness, 
suppose the money supply in period t, S

tM , unexpectedly turns out to be larger than 

markets had earlier (earlier within the short-run period t, to be more precise, and as 
Figure 82 shows) anticipated.  The motivation is likely meant to “boost aggregate 
demand.” 
 
Regardless of policy motivation, by definition of money market equilibrium, 
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must be true, regardless of whether a policy shock has occurred. 111   In turn, the 
(equilibrium) money demand function (based on the particular functional form described 
above) requires that 
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For this expression to hold with equality, a nominal money supply shock requires that Pt 
adjusts or ct adjusts or it adjusts, or any combination thereof.  Notice that whatever it is 

                                                 
110 The vastly liquid and continuously operating money market funds (which directly corresponds to the 
money market in our analysis) had failed to clear only three times in their 37-year history up until the 2008 
financial crisis. 
111  Note that in equilibrium, we drop the “S” and “D” superscripts because the very definition of 
equilibrium is that supply = demand. 
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that adjusts to maintain money-market equilibrium, it all occurs in the short run.  
That is, all of these prices and quantities are dated period t. 
 
To simplify the analysis, and because it has been empirically true in the U.S. from late 
2008 until at least 2014, suppose the short-term nominal rate is it = 0.  In terms of Figure 
81, the economy has hit the zero lower bound. 
 
The unanticipated monetary stimulus then has to effect either nominal prices Pt in the 
short run or consumption quantity demand ct in the short run, or both. 
 
Let’s paint the two polar extreme cases, first the strict Keynesian sticky price view, and 
then the strict RBC flexible price view. 
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(equilibrium) Mt-1

at

Bt

(equilibrium) Mt

Consumers 
make optimal 
choices of ct 
and nominal 

money 
demand MD

t, 
taking as 

given some 
expectation 
about MS

t 

Federal Reserve 
meets and 

determines actual 
MS

t of economy.

If different from 
expected MS

t, a 
“money shock” 

has occurred 

Regardless of whether 
or not money shock 
occurred, period-t 

consumption-money 
optimality condition 

must still hold.

Thus Mt = MD
t = MS

t 
must occur to ensure 

monetary market 
equilibrium.  

Question: if monetary policy 
shock occurred,  what prices 

or quantities adjust during 
period t to ensure 

consumption-money 
optimality condition holds?

 
 

Figure 82.  Timing of events within a given period.  Second half of timeline emphasizes that money-market equilibrium is achieved in every period time of time. 
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In the strict Keynesian case, nominal prices do not adjust in the short run.  Thus, feeling 
flush with unexpectedly large quantities of cash, consumers will raise their demand for 
goods in the short run.   “Monetary stimulus” has succeeded in that real quantity 
demanded has increased, at least in the short run.  Monetary policy is thus non-neutral 
in the Keynesian school of thought. 
 
In the strict flexible-price RBC case, nominal prices adjust very quickly.  Provided that 
“very quickly” is shorter than the length of period t, the unexpected increase in 
consumption demand is quickly neutralized -- the terminology is not coincidental – by a 
rapid increase in Pt.  In this case, all “monetary stimulus” has created is a burst of 
inflation.  Monetary policy is thus neutral in the RBC school of thought. 
 
Figure 83 illustrates these two extreme cases from the perspective of the period-t goods 
market.  The aggregate goods demand function necessarily shifts outwards due to an 
unexpected increase in the nominal supply – the (equilibrium) money demand expression 
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 shows this. 

 
 

GDPt

Pt AS (in RBC view)

AD pre-policy shock

AD post-policy shock

P*
t

AS (in Keynesian view)

 
Figure 83.  Following a positive shock to monetary policy, aggregate demand shifts outwards. 

 
Whether or not this leads to a temporary increase in equilibrium GDP depends entirely on 
the shape of the “short-run aggregate supply function.”   
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For macro-relevant lengths of “period t” (which is typically quarterly because GDP 
accounts are compiled and referenced for the January – March quarter, April – June 
quarter, the July – September quarter, and the October – December quarter), data 
suggests that an empirically-relevant slope of aggregate supply is strictly positive – so, 
somewhere between the extremely flat Keynesian AS function and the extremely vertical 
RBC-style AS function. 
 
For modern macroeconomists, this then begs the question:  what are the microeconomic 
reasons for “partial” nominal price stickiness? 
 
We sidestep this issue for now, and return to it later in the more advanced “New 
Keynesian Theory” section of the book.  For the remainder of the analysis here, we 
consider the effects of monetary policy in the long run. 
 
 

Monetary Policy II:  The Long-Run  
 
We have been considering an infinite-period framework.  As we were able to do in our 
earlier, simpler, infinite-period model absent money, it is useful to consider steady-states.  
In our explicitly monetary model here, considering the steady-state will starkly reveal a 
relationship important to all of monetary theory, a relationship between inflation and the 
rate of growth of the nominal money supply of the economy.  This way of thinking about 
inflation commonly goes under the name of “monetarism” or the “quantity theory of 
money.”112 
 
Let’s continue to use the utility function 
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, 

 
but, just like in the consideration of short-run effects above, none of the conclusions we 
reach depend on this particular functional form.   
 
For the sake of not having to turn back many pages, recall that the money demand 
expression is 
 
                                                 
112  One of the most-often quoted sayings by the late Milton Friedman, the 1976 Nobel laureate in 
economics, is that “inflation is everywhere and always a monetary phenomenon,” which has commonly 
been interpreted to mean that it is the actions of the central bank of an economy (in particular, how the 
central bank manages the money supply of an economy) that alone determine the rate of inflation in the 
economy. As we are about to see, precisely speaking, only in the steady state (i.e., in the “long run” or “on 
average”) is inflation a purely monetary phenomenon. 
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A completely analogous condition holds in period t-1 (or period t-2, or period t+1, etc.): 
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Let’s combine these time-t and time-(t-1) versions of the consumption-money optimality 
condition by dividing the former by the latter; doing so gives us 
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Reorganizing terms a bit, we have 
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From our usual definition of inflation, we have that 1 1

1
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
.  Now define the growth 

rate of nominal money in an analogous way.  Specifically, define 
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   as the 

growth rate of the nominal money stock of the economy between period t-1 and 
period t.  As an example, if the nominal money supply does not change between period t-
1 and period t, the nominal money growth rate is 0t  . 

 
Using our definitions of the inflation rate and the money growth rate above, we can 
rewrite it as 
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Now let’s consider the steady-state.  Recall our definition of a steady-state as a state of 
the economy in which all real variables settle down to constant values over time, but 
nominal variables need not do so.  Let’s make the latter part of this concept a bit more 
precise than we did earlier:  it is only nominal level variables that need not settle down to 
constant values in the long run.  For example, the nominal price level of the economy 
need not settle down to a constant value in the long run.  The same is true of the level of 
the nominal money supply of the economy.   
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On the other hand, nominal growth rate variables do settle down to constant values in the 
long run.  That is, the growth rate of a nominal variable is considered to be a real 
variable.   Moreover, interest rates, regardless of real or nominal, also settle down to 
constant values in the steady-state. 
 
Applying this more precise concept of a steady-state to the previous expression above, we 
see that all of the variables contained in it settle down to constant values in the long-run:  
that is, 1t tc c c   , 1t ti i i   , 1t t     , and 1t t     .  Imposing these 

steady-state values and canceling terms, we obtain 
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or, more simply, 
 
   . (1.12) 
 
Expression (1.12) captures the essence of the monetarist school of thought within 
macroeconomics, stating that (in the long run – i.e., in the steady state) the inflation rate 
of the economy is governed by the rate of growth of the money supply.   
 
The rate of growth of the money supply is controlled by an economy’s central bank 
because it is ultimately the economy’s sole (legal) supplier of money.  The higher is the 
growth rate of money in an economy, the higher is (in the long-run) the economy’s 
inflation rate. 
 
Hence, monetary policy is non-neutral in the long-run.  This long-run monetarist 
perspective is universally accepted by modern-day RBC-oriented macroeconomists and 
modern-day New-Keynesian-oriented macroeconomists – both camps acknowledge that 
in the long run, nominal prices do adjust.113  The neutrality debate is entirely about the 
short-run. 
 
We will next examine even further the causes and consequences of monetary policy in 
both the short run and the long run, with a special focus on the interactions between 
monetary policy and fiscal policy.  This monetarist linkage will be in the background of 
many of the causes and effects we discuss there. 
 

                                                 
113 This view apparently would not have been shared by Keynes himself, to whom the famous phrase “In 
the long run, we’re all dead!” is attributed.  
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