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Chapter 20 
Optimal Fiscal and Monetary Policy 
 
We now proceed to study jointly optimal monetary and fiscal policy.  The motivation 
behind this topic stems directly from observations regarding the consolidated government 
budget constraint.  Specifically, a broad lesson emerging from our study of fiscal-
monetary interactions is that money creation and thus inflation potentially helps the fiscal 
authority to pay for its government spending.  Alternatively, a broad interpretation we 
made when we studied optimal monetary policy earlier was that steady-state inflation 
(more precisely, any steady-state deviation from the Friedman Rule) acted as a tax on 
consumers.  At that stage, we did not note that a deviation from the Friedman Rule, 
acting as a “tax,” potentially raised revenue for the government; now, with our notion of 
a consolidated budget constraint, we are in a position to understand this latter idea. 
 
Here, the question that we take up is:  if both monetary and fiscal policy are conducted 
optimally, what is the optimal steady-state mix of labor taxes and inflation needed to 
finance some fixed amount of government spending?  Our approach to answering this 
question will hew very closely to the methods of analysis we have already developed in 
our separate looks at optimal monetary policy (without regard for fiscal policy) and 
optimal fiscal policy (without regard for monetary policy).  
 
The model we use to answer this question mostly combines elements we have already 
seen.  To overview the key elements of the model we will use to try to think about our 
main question, our model will: 

 
- Feature an infinite number of periods 
- Model money using the money-in-the-utility function (MIU) approach 
- Feature labor income taxes as the only direct fiscal instrument (i.e., no 

consumption taxes and no taxes on savings) 
- Feature a consolidated government budget constraint 
- Feature a simple linear-in-labor production technology 
- Focus on the steady state 

 
Because by now most of these model elements are familiar to us, we will not spend much 
time developing the details of the basic model; rather we will spend most of our time 
analyzing the optimal policy problem and its solution. 
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Firms 
 
The way in which we model firms is as we have often done:  the representative firm 
simply hires labor each period in perfectly-competitive labor markets and sells its output.  
The production technology we assume here is also as simple as possible, linear in labor:  

( )t t ty f n n  .  Firms’ profits in period t (in nominal terms) are thus simply t t t tP y W n , 

where the notation is standard:  tP  is the nominal price of goods, tW  is the nominal wage, 

and tn  is the quantity of labor.  When the firm is maximizing profits, we assume it takes 

as given both the nominal price P  and the nominal wage W .162  Substituting the linear 
production technology into the profit function and optimizing with respect to tn  (the only 

thing the firm decides here is how many units of labor to hire on a period-by-period 
basis) yields the firm first-order condition 0t tP W  .  If we define, as usual, the real 

wage as /t t tw W P , the result of firm profit-maximization is 

 
 1tw   (1.85) 

 
Condition (1.25) is one of the equilibrium conditions of the simple model we are 
developing, and is the only one that arises from the firm (supply) side of the model. 
 
 

Consumers 
 
As mentioned above, we will model consumers using our money-in-the-utility function 
(MIU) specification.  The representative consumer begins period t with nominal money 
holdings 1tM  , nominal bond holdings 1tB  , and stock (a real asset) holdings 1ta  .  The 

period-t budget constraint of the consumer is 
 
 1 1 1(1 ) ( )b

t t t t t t t t t t t t t t tPc P B M S a t W n M B S D a           , (1.86) 

 
where the notation again is as in the MIU model presented earlier:  tS  is the nominal 

price of a unit of stock, tD  is the nominal dividend paid by each unit of stock, and b
tP  is 

the nominal price of a one-period nominal bond with face-value $1.  Because we 
continue to assume that all bonds are one-period bonds and the face value of each bond is 

1FV  , we have that 
1

1
b

t
t

P
i




 (which you should recall), where ti  is the net nominal 

interest rate on a nominal bond held from period t to period t+1.  Note the term 

                                                 
162 Nothing more than our usual assumption of price-taking behavior; here, price-taking describes the firm’s 
behavior in both output markets and input markets. 
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(1 )t t tt W n  in the budget constraint:  it represents total after-tax labor income in period t.  

The consumer takes both the wage tW  and the tax rate tt  as given.163 

 
Note the absence in the consumer budget constraint of the lump-sum amount of transfer 
from the government which was present in our earlier study of optimal monetary policy.  
This is one subtle but crucial difference in the model we are using here to study jointly 
optimal fiscal and monetary policy. 
 
The present value of lifetime utility of the consumer is, as expected, given by 

 21 2
1 1 2 2

1 2

, ,1 , ,1 , ,1 ...t t t
t t t t t t

t t t

M M M
u c n u c n u c n

P P P
  

   
 

     
          

     
,  (1.87) 

in which each period’s utility depends on consumption c , real money balances /M P , 
and leisure 1 n  and, also as is standard by now, future utility is discounted by the factor 
 . 
 
Setting up a sequential Lagrangian (with t  the multiplier on the consumer’s time-t 

budget constraint), 
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....

t t tM S a     
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(1.88) 

 
In period t, the consumer chooses ( , , , , )t t t t tc n M B a .  Proceeding mechanically, the first-

order-conditions with respect to each of these five choice variables, respectively, are: 
 

 1 , ,1 0t
t t t t

t

M
u c n P

P


 
   

 
 (1.89) 

 3 , ,1 (1 ) 0t
t t t t t

t

M
u c n t W

P


 
     

 
 (1.90) 

                                                 
163  As before, we, “the modeler,” know from the firm optimality condition (1.25) that it will (in 

equilibrium) be the case that t tW P ; however, the consumer need not “understand” this; all the 

consumer does is take whatever tW  is as given. 
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  

 
 

      (1.91) 

 1 0b
t t tP      (1.92) 

 1 1 1( ) 0t t t t tS S D         (1.93) 

 
Conditions (1.29) through (1.33) describe how consumers make optimal choices; as such, 
they represent equilibrium conditions.  As usual, though, it is instructive to not work with 
these raw first-order conditions directly, but instead combine them into interpretable 
expressions of the form “MRS equals a price ratio” which are the cornerstone of 
consumer theory.   From here on, to save on notation, we will adopt the following 
convention regarding arguments of functions.  Rather than write, for example, 

1 , ,1t
t t

t

M
u c n

P

 
 

 
 to stand for the marginal utility of consumption in  period t, we will 

simply write 1tu , and it will be understood that the second subscript “t” indicates that it is 

time-t arguments (specifically, tc , /t tM P , and 1 tn ) that are inside the function.  Thus, 

2 tu  stands for the marginal utility of real money balances in period t, 3tu  stands for the 

marginal utility of leisure in period t, 1 1tu   stands for the marginal utility of consumption 

in period t+1, 2 1tu   stands for the marginal utility of real money balances in period t+1, 

and so on. 
 

With this notational convention, condition (1.89) implies that 1t
t

t

u

P
  .  Inserting this in 

condition (1.90) and rearranging, we have 
 

 3

1

(1 )t
t t

t

u
t w

u
  , (1.94) 

 
where, as usual, /t t tw W P  stands for the real wage in period t.  We have seen condition 

(1.94) countless times by now:  it is simply the consumer’s consumption-leisure 
optimality condition, stating that the MRS between consumption and leisure (the left-
hand-side) equals the after-tax real wage.  Condition (1.94) is an equilibrium condition of 
the model, and it describes how consumers make optimal consumption-leisure tradeoffs. 
 
Next, condition (1.92) tells us 1

b
t t tP   .  Using this fact in condition (1.91), we can 

write 2 0bt
t t t

t

u
P

P
    , or, equivalently.  Next, recall that with bonds that always have 
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a face value of one, 
1

1
b

t
t

P
i




, meaning we can write the previous expression as 

2 1
1

1
t

t
t t

u

P i

 

   
, or, simplifying, 2

1
t t

t
t t

u i

P i

 

   
.  Recalling that 1t

t
t

u

P
  , we can 

therefore write 
 

 2

1 1
t t

t t

u i

u i



, (1.95) 

 
which states that when consumers are making optimal choices, the MRS between 
consumption and money (the left hand side) depends on the nominal interest rate.164  
Condition (1.95) is the consumption-money optimality condition of this model, in analogy 
with the consumption-leisure optimality condition, and is an equilibrium condition of the 
model. 
 
Finally, the first-order condition on stock, equation (1.93), can be manipulated (along 
with condition (1.89) and the time-t+1 version of condition (1.89)) to yield a 
consumption-savings optimality condition, 
 

 1

1 1

(1 )t
t

t

u
r

u




  . (1.96) 

 
To recall details, refer back to the analysis of the consumer’s optimization problem in 
Chapter 17. 
 
 

Resource Constraint 
 
As always, the resource constraint describes all of the different uses of total output (GDP) 
of the economy.  In the model here, output is produced by the linear-in-labor production 
technology and, as in the model we used to study just fiscal policy, there are two uses for 
output:  private consumption (by consumers) and public consumption (i.e., government 
expenditures).  Hence the resource constraint in any arbitrary period t is 
 

                                                 
164 Don’t be misled by the notation:  here, 2u  stands for the marginal utility of real money balances because 

real money balances is the second argument of the utility function.  In much of what we’ve done before, the 

second argument of the utility function was leisure, meaning that in previous models 2u  stood for the 

marginal of leisure; in the model we are studying here, the marginal utility of leisure is 3u  because leisure 

is the third argument of the utility function.  This is simply a notational choice, however; we could have 
just as readily chosen to make leisure the second argument and real money balances the third argument. 
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 t t tc govt n  . (1.97) 

 
 

Government 
 
The government is a consolidated fiscal-monetary authority, as in our study of fiscal-
monetary interactions.  The period-t budget constraint of the consolidated government is 
 
 1 1

b
t t t t t t t t t tt W n P B M M P govt B         , (1.98) 

 
which is an adaptation of the consolidated period-t government budget constraint we 
encountered in Chapter 15; the only difference is that rather than regular tax revenue 
being specified arbitrarily as tT , here we have t t tt W n  .  The consolidated government 

budget constraint (GBC) has the same interpretation as in Chapter 15:  the GBC states 
that government spending on goods and services as well as repayments of maturing 
government debt (the right-hand-side of expression (1.98)) can be covered by three 
sources (the left-hand-side of expression (1.98)):  labor income tax revenue, 
issuance/sales of new government bonds, and money creation.  Compare the GBC (1.98) 
with the government budget constraints that underpinned our analysis of optimal 
monetary policy in Chapter 17 and optimal fiscal policy in Chapter 19:  1t t tM M    

and t t t t tt W n P govt    , respectively.165   

 
 

Equilibrium and Steady-State Equilibrium 
 
The next step, as usual, is to describe the private-sector equilibrium.  Because the general 
idea is the same as in our earlier (separate) studies of optimal monetary policy and 
optimal fiscal policy, we do not discuss this in detail here.  Rather, we simply proceed to 
list the equilibrium conditions and then condense things down to a small set of steady-
state equilibrium conditions. 
 
The firm optimality condition, expression, (1.85), is the only equilibrium condition 
arising from the supply side of the model.  On the demand side of the model, expressions 
(1.94), (1.95), and (1.96) describe, respectively, the representative consumer’s optimal 
consumption-leisure tradeoff, optimal consumption-money tradeoff, and optimal 
consumption-savings tradeoff.  As such, all three are also equilibrium conditions of our 
model. 
 
In principle, the resource constraint is an equilibrium condition of the model, as well.  
But, as we were able to do in our study of optimal fiscal policy, we can use the 

                                                 
165 Of course, in our previous study of just optimal fiscal policy, we did not put explicit time subscripts on 
things nor did we formulate the analysis in nominal terms, but the two modifications are straightforward. 
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consumer’s budget constraint, given by expression (1.86), in place of the resource 
constraint.  Hence, expression (1.86) is the final condition describing the private-sector 
equilibrium. 
 
We are concerned with steady-states, so we must impose steady-state on all of the 
equilibrium conditions.  At this stage, imposing steady-state should be a relatively 
straightforward exercise.  Let’s analyze in some detail, though, the steady-state version of 
the consumer budget constraint. 
 
For reasons that will become a bit more clear when we formulate the optimal policy 
problem below, let’s assume that 0B   always.  Also, it turns out that for our purpose 
(studying optimal fiscal and monetary policy) the steady-state quantity of stock the 
consumer has is irrelevant, thus let’s also assume (without further proof of its irrelevance) 
that 0a   always.166  With these simplifying assumptions, we can write (1.86) in real 
terms (i.e., dividing through by tP ) as 

 

 1(1 )t t
t t t t

t t

M M
c t w n

P P
    , (1.99) 

 
or, putting both terms involving money on the same side of the equation, 
 

 1(1 ) t t
t t t t

t t

M M
c t w n

P P
    . (1.100) 

 
Defining /t t tm M P  as real money balances, and using the manipulation 

1 1 1 1

1 1
t t t t

t t t t

M M P m

P P P 
   



 


, we have 

 

 1(1 )
1

t
t t t t t

t

m
c t w n m


   


. (1.101) 

 
Imposing steady-state,  
 

 
1

(1 ) 1
1

c t wn m


      
. (1.102) 

 

                                                 
166 Note that we are making these assertions after we have already obtained the consumer’s FOCs.  If we 
had made these assumptions before computing FOCs, the structure of the entire model would be drastically 
different; as it stands, it is relatively innocuous, but for reasons that we leave for a more advanced course in 
macroeconomic theory. 
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Next, we know that in steady state, the inflation rate equals the money growth rate; if it 
did not, then real money balances could not be constant in the steady state.167  Re-
adopting our notation from before, let g  be the steady-state growth rate of the nominal 
money supply.  Then, 
 

 (1 )
1

g
c t wn m

g

 
     

; (1.103) 

 
notice the appearance of the minus sign on the right-hand-side.  Substituting 1w , we 
have that the consumer’s choice of consumption depends on his choice of labor supply 
and real money holdings, 
 

 (1 )
1

g
c t n m

g

 
     

. (1.104) 

 
As we did in our analysis in purely optimal fiscal policy, we next substitute this 
expression for steady-state equilibrium consumption into the remaining private-sector 
equilibrium conditions, the (steady-state version of the) consumption-leisure optimality 
condition (1.94) and the (steady-state version of the ) consumption-money optimality 
condition (1.95).  Note that we do not need to make this substitution into the (steady-state 
version of the) consumption-savings optimality condition because if we impose steady 

state on equation (1.96), we find, as always, that 
1

1 r

  .  Of course, by the exact 

Fisher equation and the fact that g   in steady state, this can in turn be expressed as 
1 1 1

1 1

i i

g 
 

 
 

, which reveals that in steady-state equilibrium, 

 

 
1

1
g

i



  , (1.105) 

 
which of course was also true in our discussion of purely optimal monetary policy. 
 
Making the substitution for c  in the consumption-leisure and consumption-money 
optimality conditions thus give us 
 

                                                 
167 In other words, having already asserted that real money balances become constant in the steady state, it 

must be, by the definition of real money balances, that /M P  is constant.  The only way for /M P  to 
be constant is for the numerator and the denominator to both be changing at the same exact rate.  This is 
nothing more than our usual monetarist/quantity-theoretic notion that in the long run (i.e., in steady state), 
the money growth rate is equal to the inflation rate. 
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 (1.106) 

 
and 
 

 
2

1
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1
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g
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gg
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g


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. (1.107) 

 
In writing these two expressions, we have re-introduced the arguments to the marginal 
utility functions and also used the relationship in (1.105) to eliminate the nominal interest 
rate. 
 
Conditions (1.106) and (1.107) condense the entire description of the private-sector 
equilibrium of the economy down to two conditions.  Jointly, these two conditions should 
be thought of as defining a pair of functions ( , )n t g  and ( , )m t g .168 
 

Formulation of Optimal Policy Problem 
 
Our objective is to study jointly-optimal steady-state fiscal and monetary policy.  The 
policy problem is to choose a t  and a g  that maximizes the representative consumer’s 

utility taking into account the function ( , )n t g , the function ( , )m t g , and the government 
budget constraint.  Because we are only concerned with steady-state policy, to move 
towards this goal, let’s first rearrange the government budget constraint  (1.98) and turn it 

into a steady-state expression.  First, recognize as usual that 
1

1
b

t
t

P
i




 and divide 

through by tP  to put everything in real terms: 

 

                                                 
168 You should think of this just as the equilibrium “reaction function” ( )c g  in our consideration of purely 

optimal monetary policy and ( )n t  in our consideration of purely optimal fiscal policy.  The technical 

difference here is that the government has two policy instruments (the labor tax rate and the money growth 
rate) and there are two steady-state equilibrium objects to be determined.  However, for a wide class of 
utility functions used in quantitative macroeconomic models, it can be shown (in a more advanced 
treatment of monetary theory) that labor will depend only on the labor tax rate and money balances will 
depend only on the money growth rate.  Thus, we simply assert in the rest of what we do that this is true. 
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t t t t
t t t t
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t w n govt

i P P P
 

   
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On the right-hand-side, notice, as is always the case in a consolidated fiscal-monetary 

budget constraint, the appearance of seignorage revenues, 1t t
t

t

M M
sr

P


 .  As above and 

in Chapter 15, define /t t tb B P  as the real amount of government debt outstanding at the 

end of period t.  Also, break up the seignorage revenue term as 

1 1 1 1

1

t t t t t t t

t t t t t t

M M M M M M P

P P P P P P
   




    .  Recalling that /t t tm M P  is real money 

balances and recalling that 1 / 1/(1 )t t tP P    , we can rearrange (1.108) further to get 

 

1 1 1

1

1

1 1
t t t

t t t t t t
t t t t

m B P
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i P P
  


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 

,             (1.109) 

 
or, a little more compactly, 
 

1 11

1 1 1
t t

t t t t t t
t t t

m b
t w n b m govt

i  
     

  
     (1.110) 

 

where, in the last step, we used the manipulation 1 1 1 1

1 1
t t t t

t t t t

B B P b

P P P 
   



 


.  Our next step 

is to impose steady state on expression (1.110); doing so and combining terms,  
 

 
1 1 1

1
1 1 1

twn b m govt
i  

               
. (1.111) 

 
Because g   in steady-state, we can write the previous expression as 
 

1 1 1
1

1 1 1
twn b m govt

i g g

   
            

.   (1.112) 

 
We can condense this expression even further.  The Fisher equation tells us 
1 (1 )(1 )i r     , which in turn can be expressed as 1 (1 )(1 )i r g    .  Next, we 
know from our consumption-savings optimality condition (equation (1.96)) that in steady 

state, 1 1/r   .  Thus, in steady-state, 
1

1
g

i



  , which we saw in expression 

(1.105).   Inserting all of this on the left-hand-side of (1.112), we have  
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         

.   (1.113) 

 
After several manipulations and rearrangements, we have arrived at a very useful 
intermediate form of the steady-state equilibrium version of the government budget 
constraint.169  Expression (1.113) shows that government spending must be financed in 
the long run (i.e., in the steady state) by a combination of labor income taxes (the first 
term on the left-hand-side), seignorage revenue (the third term on the left-hand-side), and 
deflation of government debt (the second term on the left-hand-side). 
 
This last “revenue source,” deflation of government debt, can be thought of as a steady-
state version of the ideas of the fiscal theory of the price level and the fiscal theory of 
inflation that we studied earlier.  In that analysis, recall that the two ideas were distinct, 
and the distinction between them lay in when the inflation wrought by an active fiscal 
policy was going to occur:  the fiscal theory of the price level stated that it would occur 
now, while the fiscal theory of inflation stated that it would occur at some time in the 
current period or future periods, or perhaps spread out over multiple periods.  In steady 
state, however, which is what we are focused on here, the very notions of “now” and 
“later” disappear:  in steady-state, time “disappears,” thus “now” and “later” are blurred.  
Hence, in steady-state we cannot distinguish between the fiscal theory of the price level 
and the fiscal theory of inflation; the two roll into what we are here calling deflation of 
government debt.170   
 
It turns out that for the purpose at hand (studying the optimal steady-state mix of money 
growth/seignorage and labor taxes) the deflation of government debt channel is not 
important.171  Thus, from now on, we will assume 0b  (i.e., the government has no debt 
obligations), which also justifies why we assumed above that 0B   when we were 
describing the private-sector equilibrium.  The GBC can thus now be written as 
 

 
1

g
twn m govt

g

 
   

. (1.114) 

 
Recall our mode of analysis of optimal policy problems:  at the stage of determining the 
optimal policy, the government (in this case, the consolidated fiscal-monetary 
government) takes into account all equilibrium conditions, including functions that 
describe how the private sector responds to any arbitrary policy that it sets.  Thus, there 

                                                 
169 Note that in our study of the FTPL and the FTI, we were not focused on the steady-state version of the 
government budget constraint; there, we were explicitly concerned with the dynamics (of inflation and 
seignorage revenue) implied by the intertemporal government budget constraint. 
170 In yet other words, the fiscal theory of the price level and the fiscal theory of inflation are inherently 
dynamic concepts. 
171 We leave the precise reasons behind the steady-state irrelevance of the debt-deflation mechanism for a 
more advanced course in monetary theory. 
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are three more things to do with (1.114):  insert the equilibrium steady-state real wage 
rate 1w  (recall equilibrium condition (1.85)), insert the function ( , )n t g , and insert the 

function ( , )m t g .  Making these insertions, 
 

 ( , ) ( , )
1

g
t n t g m t g govt

g

 
    

. (1.115) 

 
The government’s policy problem thus boils down to the government choosing t  and g  
to satisfy its budget constraint (1.115).  The reason that the optimal policy problem boils 
down to just the government budget constraint is just as it was in our study of optimal 
fiscal policy:  the functions ( , )n t g  and ( , )m t g  already capture how the private sector 
responds to a given policy the government chooses. 
 
There are in principle an infinite number of combinations of ( , )t g  that satisfy (1.115).  In 
Chapter 19, when we arrived at the analogous place in the analysis, what we had was one 
equation (the government budget constraint) in one unknown (the tax rate); here we have 
one equation in two unknowns.  Clearly, if we knew either t  or g , then we would know 
the other as well – that is, if we somehow pick either t  or g , then equation (1.115) 
would again reduce to one equation in one unknown. 
 
In order to pin down one of the policies, let’s proceeding to compute the first-order 
conditions of (1.115)  with respect to t  and g ; using the product and quotient rules, they 
are, respectively, 
 

( , ) 0
1

n m g
n t g t

t t g

  
      

   (1.116) 

 
and 
 

 2

( , )
0

1 (1 )

n m g m t g
t

g g g g

  
       

. (1.117) 

 
Conditions (1.116) and (1.117) define either the optimal labor tax rate or the optimal 
growth rate of the money supply; they do not define both.  We will make this point more 
clear through an example in the next section, but when free to “choose” two variables 
(here, policy variables) to satisfy one equation, one is of course not really free to 
“choose” both of them.   As was the case in Chapter 19, we cannot make any more 
progress actually computing the optimal values of t and g without making some 
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assumptions about the utility function.172  This is the task we take up in the next section.  
In the next section, we first assume a conventional form for the utility function, make 
some progress towards analyzing the jointly-optimal policy, and draw on lesions we have 
learned previously to draw some general conclusions. 
 
 

                                                 
172 Note that in the analysis of only optimal monetary policy, we were able to completely solve for optimal 
monetary policy (in isolation from fiscal policy) without making any assumptions about the utility function.  
Things are different in the analysis of only optimal fiscal policy and the joint analysis because of the 
presence of the government budget constraint – that is, the presence of a financing concern (i.e., how 
should the government raise revenue?) makes things much more complicated, and the level of generality of 
proofs/results that we can obtain is not as high as it was in in the case of only optimal monetary policy. 
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A Workhorse Utility Function 
 
A utility function that is a staple in modern macroeconomic models and one that we have 
had many occasions to work with already is the additively-separable function that is log 
in consumption and money balances and linear in leisure.  For the rest of our analysis, we 
thus assume that the utility function is 
 
 ( , ,1 ) log log log(1 )u c m n c m n     , (1.118) 
 
which means the marginal utility functions are 1 1/u c , 2 1/u m , and 3 1/(1 )u n  .  

Before we can use equations (1.116) and (1.117) to figure out what either the optimal tax 
rate or the optimal money growth rates is given this utility function, we must first 
determine what the functions ( , )n t g  and ( , )m t g  are for this utility function (because we 
need these functions for use in expressions (1.116) and (1.117)). 
 
In order to determine the functions ( , )n t g  and ( , )m t g , recall that we must use 
conditions (1.106) and (1.107).  Using the marginal utility functions associated with our 
assumed utility function in these two conditions, respectively, we have 
 

 

(1 )
1

1
1

g
t n m

g
t

n

 
      


 (1.119) 

and 
 

 

(1 )
1 1

1

g
t n m

g g

m g


 

       


. (1.120) 

 
The task is to solve equations (1.119) and (1.120) for n  and m.  There are obviously a 
number of ways one can attack this problem since all it requires is some brute-force 
(though tedious…) algebra.  Let’s first solve (1.120) for m.  After a couple of steps of 
algebra and rearrangement, we have  
 

 
(1 ) (1 )

1 2

t n g
m

g 
 


 

. (1.121) 

 
Next, take this expression for m and insert it in equation (1.119); doing so, we have 
 

 
(1 ) (1 )(1 )

1
1 1 1 2 1

t n g t g n
t

n g g n
                      

. (1.122) 
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Canceling some terms gives us 
 

 1
1 1 1 2

n n g

n n g 
 

      
 (1.123) 

 
or even more compactly, 
 

 
1

1
1 1 2

n g

n g




  
    

. (1.124) 

 
Solving this for n , we find 
 

 
1 2

( )
2 3 2

g
n g

g




 


 
, (1.125) 

 
which shows that n is a function of g but not a function of t.  This is not a general 
statement, of course, but rather simply a property of the utility function we are using 
here; nonetheless, it is an interesting property to note.173 
 
Next, we need the function ( , )m t g .  To compute it, insert (1.125) into (1.121); doing so 
gives us 
 

 
(1 )(1 )

( , )
2 3 2

t g
m t g

g 
 


 

. (1.126) 

 
If neither expression (1.125) nor expression (1.126) strikes you as particularly 
informative – don’t worry, they really are not.  They are intermediates, though, required 
to take our next step, which is to insert these functions and their partial derivatives into 
expressions (1.116) and (1.117).  Omitting all the algebraic steps in computing the 
appropriate partials and doing the necessary substitutions, etc, making these insertions 
leaves us with the following two expressions that determine either the optimal tax rate or 
the optimal money growth rate: 
 

 
1

0
2 3 2

g

g




 


 
 (1.127) 

and 
 

 
2

(2 )(1 )
0

(2( 1) 3 )

t

g



 


 

. (1.128) 

  
                                                 
173 With log utility, optimal labor supply is not a function of the labor tax rate.  
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Assuming 1  , equation (1.128) can only be satisfied if 2t  , i.e., a labor tax rate of 
200 percent!  Clearly, this makes no economic sense because, as we saw in Chapter 19, if 
the labor tax rate were even just 100 percent, nobody would ever work.  This is the sense, 
then in which we meant above that the FOCs of the optimal policy problem here 
determine either the optimal money growth rate or the optimal labor tax rate.174 
 
Equation (1.127), on the other hand, immediately tells us 1g    is the optimal money 
growth rate.  We’ve of course seen this policy prescription before – it’s simply the 
Friedman Rule.  Thus, in the context of the joint conduct of fiscal and monetary policy, 
the optimal monetary component of policy is to implement the Friedman Rule, which 
recall, means that there should deflation of prices and, equivalently, a zero nominal 
interest rate. 
 
The last step is then to solve for the labor tax rate.  Inserting the Friedman Rule 1g    
in the government budget constraint (1.115) tells us that the labor tax rate must satisfy 
 

 
1

( , ) ( , 1)t n t g m t govt



 
    

 
. (1.129) 

 
 
 

                                                 
174 A useful analogy is to think in terms of the solution of a general quadratic equation.  The quadratic 
formula typically returns two solutions, but in practice, only one of them makes “sense” (i.e., in 
applications in economics, physics, engineering, etc.) 


