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Chapter 24 
Financial Accelerator 

 
 
Starting in 2007, and becoming much more pronounced in 2008, macro-financial events 
took center stage in the macroeconomic landscape.  The “financial collapse,” as many 
have termed it, had its proximate cause in the U.S., as several financial-sector institutions 
experienced severe or catastrophic downturns in the values of their financial assets.  
Various and large-scale policy efforts were implemented very quickly in the U.S. to try to 
contain possible consequences.   
 
The motivation behind these policy efforts was not to save the financial sector for its own 
sake.  Instead, the rationale for policy responses was that severe financial downturns 
often lead to contraction in real macroeconomic markets (for example, think in terms of 
goods markets).  Despite a raft of policy measures to try to prevent such effects, the 
severe financial disruption did cause a sharp contraction of economic activity in real 
markets:  GDP declined by nearly four percent in the third quarter of 2008, the time 
period during which financial disruptions were at their most severe.  This quarterly 
decline was the largest in the U.S. since the early 1980s, and GDP continued declining 
for the next three quarters. 
 
But the reason this pullback in GDP was especially worrisome was something history 
shows is common.  When it is triggered by financial turbulence, a contraction in real 
economic activity can further exacerbate the financial downturn.  This downstream 
effect was the real fear of policy makers.  If this downstream effect occurred, the now-
steeper financial downturn then could even further worsen the macro downturn, which in 
turn could even further worsen the financial downturn, which in turn could even further 
worsen the macro downturn, and …. on and on.  If this chain of events is set in motion, 
then it can become extremely difficult for anyone, policy officials or others, to do 
anything about it. 
 
This type of adverse feedback dynamic between financial activity and macroeconomic 
activity is referred to by different terms.  In media portrayals, terms such as the “financial 
accelerator,” “financial feedback loops,” “loan spirals,” and others quickly came into use 
to describe exactly this scenario as both financial and macro conditions deteriorated.  
 
This chapter studies the financial accelerator framework, and its broad purpose is to 
study general properties of events like the one just described.  The accelerator model is 
not a new framework, despite its sharp popularity in macroeconomics since 2008.  It 
actually dates back to Irving Fisher and other economists in the 1930s, as they attempted 
to understand the adverse linkages between macroeconomic activity and financial 
markets during the Great Depression.  In the 1980s and 1990s, Ben Bernanke became one 
of the world’s leading scholars of the Great Depression, and he, first on his own and then 
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later with academic colleague Mark Gertler, built quantitatively richer versions of the 
accelerator.  The framework has been a staple in macroeconomic research since then, but, 
until 2007 and 2008, had not been used for much practical policy making. 
 
But its appeal as a foundation for macro-finance issues has exploded since 2008, as many 
policy officials (including Bernanke himself as Chairman of the Federal Reserve at the 
time!) and researchers have actively developed the model further.  The goals have been to 
both inform policy advice and to simply learn more about the interconnections between 
macroeconomic markets and financial markets. 
 
To be clear, our study of the accelerator framework is meant as neither a history of the 
recent financial collapse nor of the “Great Recession” in the U.S. that it precipitated.  
When scholars such as Fisher, Bernanke, Gertler, and others developed the framework, 
they of course did not have these very recent events in mind.  Rather, they were interested 
in learning more about the general properties of adverse feedback loops.  Recent events 
have cast a spotlight on thinking more deeply about how financial fluctuations and 
macroeconomic fluctuations interact with each other through feedback effects when 
certain shocks affect the economy, and the accelerator framework has once again been 
viewed as a good starting point.   
 
The accelerator model developed below builds on the multi-period firm analysis of 
Chapter XX; but it could just as easily be developed in the context of multi-period 
consumer analysis.  To make things as simple as possible, yet rich enough to study the 
accelerator and related effects, we work with the two-period firm model from Chapter 
XX, but the ideas extend readily beyond two periods.   
 
There are four building blocks of the accelerator model:  i) a multi-period view of firm 
profit maximization; ii) a financing constraint that captures how financial assets can be 
important for loans that are used to back physical capital investment purchases; iii) a 
notion of “government regulation” that operates through financing constraints; and iv) a 
relationship between firm profits and dividends.   
 
While introducing the building blocks, extended discussion describes fundamentally new 
ideas that we have thus far not encountered.  We then formally work through several 
results and insights that the framework delivers, including the “accelerator” effect itself.  
We conclude with some bigger-picture discussion about the framework.  But even before 
describing the building blocks, we have to consider an aspect about the nature of assets 
that is crucial for the accelerator model. 
 
 

Risk Properties of Assets 
 
Even before introducing the four building blocks of the accelerator model, we need to 
describe the natures of the two fundamentally different types of assets that are central for 
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the model.  The fundamental difference between assets is in their risk properties.  At 
one end of the economic risk spectrum are riskless assets.  In the model, short-term 
government bonds are to be thought of as the riskless asset (although we will also 
consider the marginal product of capital to be a riskless asset when we get into the 
model’s details).  At the other end of the economic risk spectrum are risky assets.  In the 
model, we will consider stocks (defined exactly as in the infinite-horizon model of 
Chapter 8) as the risky asset. 
 
For all of our analysis, risk is defined to mean the “guarantee” about the value of an 
asset’s payoff at some point in the future.  More precisely, at a fixed date in the future, a 
riskless asset is one whose value is known for sure by market participants, whereas a 
risky asset is one whose value is not known for sure by market participants.207  The latter, 
risky, asset is the one whose value has less guarantee. 
 
No asset is truly riskless.  But what matters for the definition is a relative notion of risk.  
As an example, U.S. aggregate stock returns vary more sharply over time than do U.S. 
short-term government bond returns. 208   U.S. bond returns do vary, in sometimes 
unexpected ways – hence one may want to call them “risky.”  But stock returns are even 
more risky than U.S. short-term government bond returns.  For the purposes of economic 
analysis, it is thus sufficient to identify stocks as risky and U.S. short-term bonds as 
riskless,209  which is helpful taxonomy.  Several further aspects about risk and asset 
returns are worth describing. 
 
First, we should recognize that financial assets that are not bonds (even more precisely, 
that are not short-term government bonds) by definition do not guarantee, based on 
purely economic incentives, any payment(s).  In practice, any “guarantee” provided by 
risky assets is conferred on them by legal precedents, government decrees, social norms, 
and so on, which have various degrees of social value – but they are not conferred by 
pure economic incentives.  Thus, if stocks carry some “guarantees” of payment(s), they 
should be thought of as arising for “non-economic” reasons. 
 
Second, there is no reason why “stocks” had to be selected as the model’s risky asset.  In 
principle, any financial asset that is more risky than U.S. short-term government bonds 
serves the goals of the model equally well, especially because our analysis, while 
couched in a formal optimization problem, is ultimately qualitative.  A few examples of 

                                                 
207 In terms of probability and statistics, a riskless asset has a known expected value (the first central 
moment) and zero variance (the second central moment) around that expected value.  A risky asset has a 
known expected value and a positive variance around that expected value.  “Risk” is implied by the 
positive variance. 
208 As in Chapter XX, we should think of stocks as something like the S&P 500, which is representative of 
stock-market aggregates. 
209 Recall the discussion in Chapter XX that U.S. short-term government bonds have long been considered 
the riskless asset in markets.  Of course, it is possible that some (adverse and large) negative shock could 
prevent the U.S. government from making its next short-term bond repayment.  But, in practice, this has 
never happened in over 200 years of U.S. history. 
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other financial assets include foreign stock, shares in oil companies, and holdings of 
financial products based on housing mortgages – the last example in particular is relevant 
for the recent U.S. financial and economic downturn.  But the accelerator framework, 
developed as it was originally in the 1930s and then re-developed in the 1980s and 1990s, 
captures much broader ideas than the events of just the past few years.  A bit further 
discussion appears when we describe the first building block of the model, but the broad 
notion of “stocks” captures the crucial risk idea for the accelerator.210  
 
Third, for either riskless or risky assets, one can always define the “interest rate” on that 
asset.  For short-term bonds (which sometimes will be referred to from here on simply as 

“bonds”), the nominal interest rate is defined by 
1
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in which the notation is exactly as in our earlier study of stock prices:  St is the nominal 
price of a share of stock in period t, and Dt is the nominal dividend payment per share of 

stock in period t.  In the accelerator model, any gap between i and STOCKi  drives critical 
results. 
 

Fourth, as a point of terminology, we will refer interchangeably to both i and STOCKi  as 
“interest rates” or “rates of return.”  For non-bond assets, “interest rates” is 
unconventional language (rate of return is usually preferred).  But from a presentation 
perspective, using the same terminology for different types of assets emphasizes that 
there are economic relationships between them and consequences implied by them that 
matter for some types of transactions.  These relationships emerge in detail below.   
 
Fifth, regardless of risk properties, we can measure an asset’s rate of return in either 
nominal terms, as shown above, or in real terms (in which we measure the returns by r 
and STOCKr ), the latter by appropriate application of the Fisher relation.  For consistency 
with earlier analyses, we begin with a nominal view as we now turn to the building 
blocks of the model. 
 
 

                                                 
210 We should also note that assets whose risk properties lie between “purely riskless” and “extremely  
risky” also exist.  For the purposes of this chapter, we do not need to consider such “intermediate” risk 
levels, the two we have of “riskless” versus “risky” is sufficient. 
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Building Block 1:  Firm Profit Function 
 
The first building block is the firm’s dynamic profit function.  As stated above, we limit 
ourselves to a two-period time horizon, with optimization conducted at the start of period 
one.  But note that all of the analysis and results can be readily extended to more than two 
periods. 
 
Given that stock is the risky financial asset in the model, it appears in the first building 
block of the framework, the dynamic profit function, 
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which is an extension of the profit function studied in Chapter XX.  The extension is 
simply that stocks are accumulated by the firm, for the purpose described in the next 
subsection.  As in Chapter XX, because the analysis is being conducted from the 
perspective of the start of period one, the period-two components of profits are 
discounted by a (gross) nominal interest rate 1+ i.   
 
Two important points are useful to clarify. 
 
First, a natural question may be:  where are the short-term riskless bonds?  The answer is 
that the interest rate i that appears in the discounting is exactly the one on short-term 
bonds.  Thus, even though it superficially appears that bonds are not present in the profit 
function – they actually do appear.  Hence, both the riskless interest rate and the risky 
interest rate appear in the profit function. 
 
Second, an important distinction to make in reading the profit function is one between the 
optimization problem faced by one single (small) firm versus aggregate market 
variables.  Although we will take the representative-firm approach in analyzing the 
results of the optimization, at this stage of the analysis, the firm is to be viewed as one of 
the small, atomistic firms in the overall economy.  Thus, the terms involving stock in the 
profit function are not, at this stage of the analysis, this particular firm’s own stock.  If 
they were this particular firm’s own shares, it would be hard to understand why (in the 
ensuing analysis) stock prices and dividends would be taken as given.  Stock prices and 
stock dividends are to be thought of in their usual aggregate terms, and they are taken as 
given until we get to the first-order conditions.  This distinction is exactly the one 
between partial-partial equilibrium, partial equilibrium, and general equilibrium that we 
have drawn several times. 
 
From an analytical perspective (and as always in considering the two-period framework) 
the firm needs neither physical capital at the start of the non-existent “period three” – 
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hence, k3 = 0 – nor financial assets at the start of the non-existent “period three” – hence, 
a2 = 0.211 
 
 

Building Block 2:  Financing Constraint 
 
The second building block of the accelerator framework is its critical conceptual idea.  
All of the analysis ultimately revolves around it, so it is important that we clearly 
understand it, both technically and conceptually. 
 
An important practical issue for many firms is that in order to purchase physical assets 
(think large-scale expenditures for investment in machinery, equipment, computers, and 
so on), they require a sufficient (market) value of financial assets, which facilitates the 
borrowing that is needed in order to finance their purchase.  The “market value” nature 
of financial assets is important:  it indicates that both the price and the quantity of 
financial assets held by a firm matter for its ability to borrow. 
 
This raises a question:  why does a firm need to borrow at all?  In Chapter XX, firms 
simply demanded as much labor and as much capital as was profit-maximizing:  there 
was nothing formal within the framework that concerned borrowing.  In certain 
situations, however, a firm may need to borrow for large-scale investment purchases.  In 
these cases, a particular type of market imperfection, which is viewed as central in 
financial theory, necessitates that a firm “back” a loan, or “pledge collateral against” 
procurement of a loan.  The proceeds of the loan are then used for physical capital 
expenditures.  By inherent properties of assets, it is “risky assets” that must be used to 
back the loans obtained for capital expenditures (which are to be interpreted as “riskless” 
assets).212  These points are expanded below.  But a critical connection with the basic 
firm analysis of Chapter XX is that all of the ideas to be presented below could indeed 
have been present there, as well; for a reason to be made very precise, though, they can 
all be thought of as zeroing out in Chapter XX. 
 
To make progress with the mathematics of the model, the expression that forms the 
centerpiece of the second building block is 1 1 1 1· ··P Rinv S a  (in which 1 2 1inv k k   is 

physical capital investment).  Or, to instead express things in terms of only k, simply 
substitute the definition of investment.  This allows the financing constraint to be 
written a bit more explicitly as 
 
                                                 
211 Nor any other assets, if there were other assets in the formal framework. 
212 We are using “stock” as the risky asset, but an appropriate interpretation is that any financial asset(s) 
could be held by firms to back borrowing that will be used for physical capital purchases.  The details of 
exactly which financial assets are collateralizable are country-specific and/or market-specific and/or 
industry-specific, and they are governed by various private-market arrangements and government 
regulations.  The details of such institutional setups are beyond the scope of our study.   
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 1 2 1 1 1) · ·( k SR aP k   . 

 
This financing constraint will be modified in a slight, but important, way in the next 
subsection.  So this will not be the exact way we use it in the analysis later.  Nonetheless, 
if this constraint did not exist, none of the rest of the framework matters, a point that will 
be established rigorously when we study the model’s insights. 
 
Regarding the formal expression of the financing constraint as written so far, the left-
hand side is the nominal value of physical investment expenditures, 1 2 1( )P k k , the firm 

plans to undertake in period one.  On the right-hand side, the term S1a1 is the firm’s 
market value of collateral for the loan.  The market value of collateral is the backing 
pledged by the firm in order to obtain the loan, whose proceeds in turn will be used to 
purchase physical assets.  Even though the financing constraint is not yet in its technical 
final form, it is close enough to its final form that three important points are worth 
discussing (the first two of which are highly related, but we disentangle them to make 
them conceptually easier to understand). 
 
In financial theory, one of the most important market imperfections is informational 
asymmetries.  We distinguish two aspects of informational asymmetries: those arising 
between potential borrowers and potential lenders, and those arising between the pair and 
the overall economic environment as time evolves.  For both aspects, a simple illustrative 
example is the case of an individual seeking a mortgage loan in order to purchase a 
house.   
 
First, no matter how many credit references, income verifications, and other means-
testing a potential lender conducts, a potential borrower fundamentally knows more about 
his own personal circumstances when the time for (long-lived) loan repayments begins.  
This informational asymmetry provides the potential lender an incentive to not make a 
loan in the first place, even if the loan would be beneficial to both the lender and the 
borrower.  The incentive driving the lender is fear that he will not be repaid.   
 
Private markets have developed a way to manage some of the consequences of this aspect 
of informational asymmetries:  lenders require borrowers to “put some skin in the game” 
at the time a loan is originated.  If the potential borrower puts down, say, 20% of the total 
value of the house, this affects the lender’s incentives to loan the remaining 80%.213  The 
lender now effectively knows that, if the borrower does “walk away” from the loan 
repayments very quickly, the borrower would at the very least have lost 20% of the value 
of the house.  And that cost may be large enough that it would induce the potential 
borrower to not approach the lender in the first place, unless he was serious about making 
a steady stream of repayments.   
 

                                                 
213 20% down payments for home mortgages was a long-standing norm in the U.S., until the several years 
before the events of 2007 and 2008, when down payment requirements sharply declined. 
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Such “down payment” requirements affect not only consumers, but also firms when they 
are making large-scale purchases.  The intuitive way to think about the market value of 
assets on the right-hand side of the financing constraint is thus as a down payment that is 
being used to back a loan for use on purchases of capital goods.  The firm then makes a 
steady stream of repayments that slowly repays the loan. 
 
The “steady stream of repayments” raises the second of the two aspects of informational 
asymmetries:  there is inherently a maturity mismatch between the financial asset being 
used as a down payment, and the physical asset for which the loan is being made.  This 
aspect does not involve any “malicious” informational asymmetry between borrower and 
lender.  Instead, the asymmetry is between the perfectly-aligned goals of the borrower-
lender pair and the overall economic environment – the latter naturally changes over time 
even if the aligned borrower-lender goals do not.    
 
The maturity mismatch is captured in the model in a simple way by including a1, not a0, 
on the right-hand side of the financing constraint.  The reason for a1 appearing on the 
collateral side can be described in purely technical terms:  a0 is pre-determined at the start 
of period one, implying there is no choice by the firm about its value.  In order for the 
framework to make testable predictions, the firm should have some choice about the 
right-hand side of the collateral constraint, hence the inclusion of a1.   
 
But to understand it conceptually, it is helpful to continue the example of an individual 
person pursuing a mortgage loan in order to purchase a house.  Obtaining a mortgage 
loan typically requires a down payment (as above, say 20% of the market value of the 
house).  In the process of completing the loan, the individual has to make several 
decisions about his own personal finances.  These decisions are intended to obtain the 
20% down payment in a liquid form to pass on to the lender.214  Regardless of the precise 
decisions, the key aspect is that there are some decisions that the potential borrower had 
to make in the process of going to the bank, withdrawing funds from certain accounts, 

                                                 
214 For example, the borrower may have to withdraw funds from a protected savings account against which 
checks cannot be written and then transfer it to his own checking account.  Regarding passing on the down 
payment to the lender, it is convenient to think of a “down payment” on a home-mortgage application as 
being “in cash.” But it is technically not cash.  Technically, the down payment is a type of “short-term 
bond.”  The bond nature of a down payment arises because (given the magnitude of resources involved) a 
potential lender inevitably asks for a “certified check” from an individual’s bank.  The certified check is a 
verification provided by the individual’s personal bank that the funds are actually in his bank account, and 
that the funds are being held for the explicit purpose of payment to the lender.  These details are unlike the 
case of an individual handing over literally cash, or of providing an uncertified check.  The uncertified 
check provides no verification of the availability of funds when the lender tries to redeem it (which again 
raises the consequences of the first, “malicious,” aspect of informational asymmetries); whereas hard cash 
is generally not accepted (partly for legal reasons) for such large transactions.  The individual’s own 
financial institution essentially has issued a “short-term bond,” which will be repaid (out of the borrower’s 
funds) when the lender redeems the certified check.  From an operational standpoint, these “bank-issued 
short-term bonds” are equivalent to a reliable government’s short-term bonds – the key aspect is that they 
are both short-term.   
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depositing extra funds in other accounts if necessary, obtaining a certified check, and so 
on.   
 
In contrast, the very nature of a house, which is the ultimate reason for borrowing in this 
example, makes it a much longer-term asset:  the average house can last for decades.  So 
the “maturity mismatch” is that the financial asset used to collateralize the loan on which 
the house is actually purchased is much shorter in time horizon than the long-lived 
physical asset being bought.  The long-lived nature of the physical asset is the source of 
the long-lived “steady stream of repayments” by the borrower back to the lender. 
 
The same maturity mismatch idea applies to firms’ financing of physical capital 
purchases collateralized by loans secured by stock.  New machines, new factories, new 
delivery vehicles, and so on last for much longer periods of time than the financial assets 
being used to collateralize loans for their purchase.  Their long-lived nature provides part 
of the source of profits for many periods, which in turn is the source of the long-lived 
steady stream of repayments by the firm back to the lender.   
 
In the two-period setup, the end of the second period makes things rather stark because 
there is no more need for either physical capital or financial assets.  Extending the 
analysis beyond two periods, and, importantly, allowing capital to be productive and 
therefore profit-generating for many periods, brings the maturity mismatch idea squarely 
into view in the model.215  While the starkness of the two-period framework mutes the 
maturity mismatch idea a bit, it does capture it in a simplified form and it does not 
obscure the economic insights provided by the accelerator framework. 
 
The third point is more technical.  The financing constraint should properly be considered 
an inequality constraint:  1 2 1 1 1) · ·( SRk aP k   .  The fully correct analysis of inequality-

constrained optimization problems requires the use of Kuhn-Tucker optimization tools, 
which is a generalization of the Lagrange optimization tools we have been using (recall 
that the Lagrange method formally applies only to equality constrained problems).  To 
keep things in line with our Lagrange-based methodology, we will formally assume that 
the financing constraint always holds with strict equality – or, in more technical 
language, that the financing constraint “always binds.”   
 
However, when we briefly discuss the consequences of ever-increasing financial market 
returns (which will not be our main analytical experiment), we will have to move away 
from the Lagrange-based predictions.  The richer Kuhn-Tucker analysis would allow us 
to rigorously establish what happens in this particular case; but we will simply approach 
it qualitatively.  More details are provided when we get to that point, but the important 
idea is that a borrower cannot be compelled to borrow more than he wants to 

                                                 
215 To see this, suppose we take a weekly view of time periods.  If new physical capital takes 52 weeks to 
build and be ready for use by a firm, and it takes only one week to arrange financing-related decisions, then 

the financial constraint would intuitively read  
1 52 1 1 1

) · ·( SRP k k a  . 
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borrow, even though he can be compelled to borrow less than he wants to borrow.  
This asymmetry is important, one that will be reflected in the permissible values of the 
Lagrange optimization, which we discuss when we begin considering first-order 
conditions. 
 
 

 
 
 
To recap, the financing constraint is the central building block of the accelerator 
framework.  It arises due to fundamental informational asymmetries that affect the 
borrowing/lending transaction.  Although there are other crucial elements of the model, if 
the financing friction were not present, the entire analysis below would collapse, and the 
predictions would literally return to those of the baseline Chapter XX, as we will point 
out in key places.  The constraint is a summary way of portraying markets’ mechanisms 
for trying to mitigate the consequences of informational asymmetries that are impossible 
to avoid in any interesting financial transaction.  From a more analytical perspective, the 
constraint also captures the idea that a firm (more generally, any potential borrower) has 
to make purposeful decisions about both the value of collateralizable financial assets and 
about the quantity of physical investment it wants to purchase using loans backed by 
those financial assets.   
 
 

Building Block 3:  Government Regulation 
 
The financing constraint is to be viewed as a primitive feature of private-market 
transactions, ones plagued by important informational asymmetries, that arises directly 
from private parties’ incentives.  Given the existence of this constraint, it permits the 
government a channel by which it can possibly regulate market transactions in which 
informational asymmetries are present.  
 
Specifically, let’s layer into the financing constraint above a catch-all “government 
regulatory measure” R > 0, so that the financing constraint with which we will actually 
work is 
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Although this form of the financing constraint looks nearly identical to the one 
introduced above (it would be exactly identical if R = 1), it is useful to think of this 
expression as distinct from the “basic” financing constraint that arose directly in the 
private sector.  Thus, despite their formal near-similarity, it is very useful to keep the 
second and third building blocks conceptually separate. 
 
The measure R > 0 (more precisely, its inclusion in the financing constraint as written 
above – we will sometimes simply say “R > 0” as a shorthand way of describing the 
entire idea) is the third building block of the accelerator framework.  Except for brief 
discussion immediately below regarding the nature of R, we will stick with the very 
general interpretation that it is controlled by the government.  Extra precision about R is 
not critical for analysis of the accelerator. 
 
If we do interpret R as reflecting only government regulation, or government oversight, it 
is easy to imagine that it consists of various components.  For example, suppose the U.S. 
Securities and Exchange Commission (SEC) and the U.S. Treasury are the only two 
government agencies that have any role in the process of setting R.  For certain applied 
questions, it may be useful to think of R as being decomposed into ·TRES SECR R R , 
which is the multiplicative product of each agency’s own regulatory scheme.  If the 
Federal Reserve System is also involved in providing such regulation, then it may also be 
helpful to think in terms of · ·TRES SEC FEDR RR R .  Decompositions of this type may be 
useful in considering the details of government regulatory policy and its implementation.   
 
One could instead think of R as being set by both government regulation (by one or many 
underlying institutions) and by private-sector “norms” regarding borrowing and lending.  
In this case, it can be useful to decompose R into ·GOV PRIVR RR , which emphasizes the 
private-sector / government spectrum.  Then, just as above, one could decompose RGOV 
into finer sub-categories if needed; by analogy, one could also decompose RPRIV into finer 
sub-categories if needed. 
 
However, in the basic analysis, we will simply consider R > 0, because R is taken as 
given from the perspective of private-market participants in a financial transaction.  Our 
analysis has nothing concrete to say about how different groups might organize to 
“lobby” various government agencies and/or private-market organizations to change 
(components of) R.  While interesting as talking points, this more advanced analysis 
requires bringing in additional constraints that describe the organizing process, the 
lobbying process, and so on.  For the general analysis of the accelerator framework, 
though, it is overkill.  In the interest of keeping things as simple as possible, and to fix 
some language for the rest of the analysis and discussion, let’s return to describing R > 0 
as a catch-all government regulation measure that affects private-market financial 
transactions. 
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Given this interpretation, what exactly is R?  Some examples include institutions such as 
rules regarding filing of proper documentation, full disclosure (“truth in lending”) laws, 
regulations that provide for direct lending in some markets and/or geographic regions, or 
regulators looking favorably at some sub-markets.  But these are all talking points, 
because, once again, the model makes no statements about the sources of R. 
 
Regardless of the interpretation of R, it plays an important role in markets.  To see this 
directly, examine again the financing constraint that contains R.  Now including R > 0, its 
literal statement is that for a given market value of collateralizable assets S1a1, the 
amount that can be used as the backing for a loan to be used for physical investment is R 
times that market value.   
 
In financial analysis, R is referred to as the leverage ratio, which measures the multiple 
of the market value of collateralizable assets up to which borrowing can occur for the 
purchase of physical assets.  Intuitively, a very high value of R indicates “fragility” 
(which need not be, but could be, excessive) on the part of a borrower, a point that has 
been brought up frequently in discussing the U.S. financial and economic situation 
starting in 2007.  Finally, if R is set solely by government regulation, purposeful changes 
in R, holding S1a1 constant, imply that the amount that can be borrowed scales directly 
with R.   
 
To recap, R > 0, as embedded in the financing constraint, is the third building block of the 
accelerator framework.  In the analysis below, this version of the financing constraint 
will appear in the formal problem, not the primitive form 1 2 1 1 1) · ·( SRk aP k    described 

earlier.  The primitive form should be thought of as a mechanism originated solely by 
private-market participants in order to manage the consequences of informational 
asymmetries.  Given the existence of the basic constraint, the government can impose 
some “regulation” on financial transactions through it.  The financing constraint in its 
final form is thus written as 1 2 1 1 1) · ·( SRk aP k    (a special case of which is obviously R = 

1).  But, to be clear, the regulatory aspect could not even manifest itself if not for the 
existence of the constraint in the first place.  It is important to keep these two ideas 
distinct, even though the third building block builds directly on the second building 
block. 
 
 

Building Block 4:  Profits and Dividends 
 
Dividends are the payments made by publicly-traded companies to their shareholders, 
who are ultimately the owners of public companies.  Corporate dividend policies 
naturally differ amongst countries, amongst industries within a country, amongst sub-
industries within industries, and so on.  Differences reflect different economic structures, 
different governing institutions, and various degrees of social and cultural norms 
regarding acceptability.   
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Adopting a U.S.-centered, representative (publicly-traded) firm approach, it is instructive 
to examine the share of total corporate profits paid out as dividends.  [Figure [XX] plots 
the S&P 500 dividend payout rate, which is simply the fraction of total corporate 
profits of the S&P 500 firms that are paid out as dividends] 
 
 

[GRAPH OF S&P 500 DIVIDEND RATE] 
 
 
While the dividend rate has clearly declined over time, a stark point to note is that there 
was not much of a change in the rate as the financial turmoil and ensuing U.S. Great 
Recession of 2007 – 2009 occurred.  
 
The fourth building block closes the macro-finance link with the statement that the 
percentage ρ (the Greek letter “rho”) of profits paid out as dividends is constant over 
time.  Formally, the nominal quantity of per-share dividends relates to ρ, P2, and real 
profits according to 
 
 2 2 2· ·P proD fit , 

 
in which profit2 is real per-share profits, and in which attention is limited to just period 
two because of the two-period framework being studied.  If we extend the framework 
beyond two periods, this relationship simply generalizes to · ·t t tP pD rofit .   

 
 

Analysis Part I:  Basics 
 
Having established the four building blocks of the model, we can now begin studying its 
predictions.  In terms of formal optimization, the Lagrangian for the problem is 
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in which   is the Lagrange multiplier on the financing constraint.  The next step would 
be to compute first-order conditions.  But it is very helpful to discuss important economic 
intuition about the multiplier  .   
 
When presenting the second building block, we asserted that the financing constraint will 
be assumed to always hold with equality in the formal analysis.  However, it need not 
hold with equality in practice.  A consequence of the possibility that it holds with 
equality is that the Lagrange multiplier must be (weakly) positive at the optimal choice – 
that is, 0   must hold at the optimal choice.  The multiplier λ cannot be a strictly 
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negative value at the optimal choice.  The non-negativity of λ is a condition we have not 
at all encountered before, and its meaning is important. 
 
The non-negativity of λ may seem a somewhat technical point, but it is actually easy to 
describe in terms of economic insight.  Note that the non-negativity of λ is simply an 
asymmetry regarding λ.  The reason this mathematical asymmetry about λ arises as part 
of the optimal solution of the accelerator framework is that it reflects the conceptual 
asymmetry about borrowing that is an input into the framework.  If the firm optimally 
chooses not to borrow at all for the purpose of physical capital purchases, then it 
optimally decides that there is no need for it to rely on the financing restriction.  There is 
nothing that compels a firm to find a lender to procure a loan if it optimally chooses to 
not do so.  If the firm optimally chooses to not borrow, then 0  .216  Important here is 
the repeated use of the term optimal.   
 
This intuition is a very general and powerful one in optimization analysis, regardless of 
whether it is an economics application, an engineering application, a physics application, 
or any application:  if asymmetries inherently exist in the inputs to the optimization 
problem, then multipliers must themselves display asymmetries at the optimal 
solution.  Once again, important here is the use of the term optimal. 
 
The housing example is again useful for further illustrative intuition; for simplicity, let R 
= 2 throughout the rest of this example.  Suppose the optimal level of spending for (the 
total value of) a house is $100,000, and an individual has, say, $200,000 in funds in his 
personal bank account that have been optimally chosen for the sole purpose of backing a 
loan for the house.  Then there is optimally no reason for the individual to obtain a 
loan at all!  He can simply pay $100,000 directly for the purchase of the house with his 
own available funds, without any need for borrowing.  Optimally choosing to not rely on 
the financing constraint exactly implies 0   at the optimal choice.217  
 
The Kuhn-Tucker analysis (which, to reiterate, we are not employing) properly rules out 
strictly negative values of λ and, intuitively, inserts λ = 0 when this situation arises.  In 
the context of the examples above, Kuhn-Tucker thus mathematically delivers the correct 
result.   
 

                                                 
216 This result can be stated more powerfully, given the structures built into the accelerator model, as will 
become clear through the first-order conditions and ensuing analysis below:  even if a firm does have to 

borrow, if borrowing interest rates are identical to our standard notion of interest rates – that is, if 
STOCK

i i  -- 
then 0  . 
217 A more everyday example is a personal favorite.  I enjoy driving fast.  What if speed limits everywhere 
were 300 miles per hour?  You are allowed to drive as fast as you want, but your speed cannot exceed 300 
miles per hour.  In principle, this is a constraint imposed on my optimal speed.  But in practice, it is one 
that is irrelevant for my optimal choice because I cannot purchase a car that drives that fast.  The constraint 
exists, but it does not affect my behavior, hence the multiplier on it at the solution of my optimization 
problem about how fast to drive is zero. 
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Instead, the straightforward Lagrangian analysis leads to the conclusion that the value of 
λ, in the same examples, is strictly negative.  This is despite the logical conclusions above 
that λ cannot be strictly negative due to the optimal lack of reliance on the financing 
constraint.  The incorrect conclusion that λ < 0 in turn leads to other downstream 
conclusions that, unfortunately, are also incorrect.  The bottom line is that, in cases where 
the financing constraint simply “does not bind,” (i.e., is optimally ignored) the formal 
Lagrange analysis leads to incorrect results. 
 
The opposite case, however – that is, when 0   turns out as part of the result – works 
just fine from the perspective of both Lagrange and Kuhn-Tucker analyses.  The opposite 
case is that of a borrower being compelled to borrow because his pledgeable funds are 
insufficient to pay for the optimally-chosen spending.  In the housing example (and with 
R = 2) from above, suppose the individual has only $50,000 in his personal bank account 
to optimally pledge against a loan for the purpose of buying the $100,000 house.  In this 
case, he must collateralize his funds in order to borrow enough to pay for the house.  In 
this simple example, he can take out a loan of $50,000 with his own personal $50,000 
pledged as collateral, and then use the resulting $100,000 to purchase the house.  This 
result is reflected technically in a (weakly) positive value of λ, which both the Kuhn-
Tucker and Lagrange analyses correctly deliver. 
 
This discussion regarding numerical values of multipliers at the optimal choice should 
strike you as intuitive – read it over several times, though, to allow it to sink in.  Also 
think of similar personal situations, like purchasing a car or paying to attend college, 
which are also events that may or may not have required obtaining a loan. 
 
In none of the models studied thus far have non-negativity issues regarding multipliers 
arisen.  This is because asymmetry has fundamentally not appeared in models thus far.  In 
such cases, the value of multipliers at the optimal choice could be positive or negative – 
there is no asymmetry conditions regarding values of the multiplier.  But asymmetries do 
(easily) arise in the accelerator framework, due to the basic economic asymmetry in the 
need for borrowing.   
 
In all of the formal analysis of the accelerator, we will limit attention to cases in which 

0   turns out to be part of the optimal solution.  The discussion regarding asymmetries 
is nonetheless raised here because one may wonder why situations like the financial 
collapse of 2007-2008 and associated downstream events do not occur “all the time.”  
The basic reason is simply the asymmetry regarding borrowing, which is reflected in the 
asymmetry regarding λ. 
 
Given the setup of the accelerator framework and limiting attention in the formal analysis 
to cases in which 0   is part of the optimal solution, we could in fact re-interpret the 
analysis of Chapter XX as being the special case of 0  (which is intuitively the knife-
edge case between the Kuhn-Tucker and Lagrange cases).  What 0   at the optimal 
choice means is that despite the existence of informational asymmetries that require a 
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financing constraint, they turn out to not at all matter for the results of Chapter XX.  
More precisely, the financing constraint ends up not at all affecting either the capital 
demand or the labor demand functions if 0   is in place.  We will see these points 
formally below. 
 
However, by allowing 0   and not assuming 0   (note this distinction), the richer 
accelerator analysis allows us to study a crucial issue (besides that of the accelerator 
effect itself):  the market and/or regulatory settings that allow for 0   to arise as an 
outcome, rather than being imposed as an assumption.  Stated more technically, the 
accelerator allows us to consider how or why λ = 0 can emerge endogenously, rather than 
simply being assumed exogenously.  We will revisit this important economic question 
after obtaining first-order conditions and doing some other preliminary analysis. 
 
First-Order Conditions 
 
Based on the Lagrangian above, the first-order conditions with respect to n1 and n2 are 
 
 1 1 1 1 1( , ) 0nP f k n Pw   

 
and 
 

 2 2 2 2 2( , )
0

1 1
nP f k n P w

i i
 

 
. 

 
Cancelling terms appropriately in each of these expressions gives 1 1 1( , )n kw nf  and 

2 2 2( , )n kw nf .  If the analysis is extended beyond two periods, the first-order condition 

on labor is ( , )t t tn kw nf , for every time period t.  Irrespective of whether the time 

horizon is two periods or longer, these labor demand conditions are identical in functional 
form to those from Chapter XX.  Thus, up to first-order, there is no shift of the labor 
demand functions; but further discussion about this appears below. 
 
Given the particular setup of the framework, in which it is only physical capital purchases 
that are subject to financing constraint (which is the most common form of the 
accelerator model), it is only physical capital investment in period one that is 
(potentially!) directly affected by financing issues.  The first-order conditions with 
respect to k2 and a1 are thus the heart of the analysis.  These conditions are, respectively, 
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and 
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Zooming in again on the multiplier 0  , its appearance is what differentiates the first-
order condition on k2 from the simpler one that appears in basic firm analysis.  The basic 
firm analysis is to be thought of as the special case of 0  .  In order to work out the 
implications of the more general case in which 0   is part of the optimal solution, a 
joint analysis of both of the immediately preceding first-order conditions is required. 
 
The ensuing analysis takes up two distinct, but related, questions:  first, what economic 
and/or regulatory conditions cause 0   to emerge as an outcome (rather than being 
assumed); and second, how, in the case of 0  , the capital demand function modifies.  
The first issue requires analysis of only the first-order condition on stock; the second 
issue requires joint analysis of both the first-order condition on stock and the first-order 
condition on physical capital.  Once we have the modified capital demand function in 
place, we can then directly study the accelerator effect itself.   
 
When Does λ = 0? 
 
An important question is the conditions (if any exist) under which 0   emerges as an 
outcome as part of the optimal choice.  Studying this question requires only the first-
order condition on stock.  Because doing so spotlights the insights, isolating the   term 
from this first-order condition is helpful.  Simultaneously emphasizing the real (as 
opposed to nominal) nature of the accelerator, although not required, is also helpful.   
 
The full set of algebraic rearrangements (which is simply several steps of algebra) 
appears in the Appendix; proceeding here directly to the resulting expression, the 
multiplier   that emerges is 
 

1

1

STOCKr r

r R


 
   

. 

 
Based on earlier discussion, we know that λ < 0 cannot occur.  The fact that it seems that 
λ < 0 can occur reflects the use of purely Lagrange tools.  Thus, we can formally ignore 
the case of λ < 0 because the Kuhn-Tucker analysis would properly insert λ = 0 in its 

place.  In terms of rates of return, we can thus ignore the case of 0STOCKr r  .   
 
Discarding the case of λ < 0, the expression states that two basic conditions determine 
whether or not 0   (or, more precisely, whether or not λ is such a small positive 
number that it is tantamount to zero).   
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First, if 0STOCKr r  , then 0   emerges as an outcome of the analysis.  This result is 
irrespective of the precise numerical value of R > 0.  Intuitively, if the real returns on 
riskless assets are aligned with the real returns on risky assets, then, despite the presence 
of informational asymmetries and the attendant financing constraint, they turn out to 
simply not matter at the optimal choice.  This is all captured by 0  .  An exactly 

analogous result ( 0STOCKi i  ) emerges if we prefer thinking in terms of nominal rates of 
return.  
 

If instead 0STOCKr r  , then the expression states (again given the maintained 
assumption R  > 0) that 0   strictly.  We have already discussed the interpretation of 
the strict positivity of the multiplier:  the firm must actually rely on the constraint to 
obtain a loan, due to financial assets that are insufficiently large to purchase the physical 
capital outright without a loan. 
 

But consider also the case of 0STOCKr r   simultaneously with a regulatory measure R 
so large that it can be effectively interpreted as R    (more properly, think in terms of 
mathematical limits, lim

R
).  If R is extremely large, then a very small market value of 

financial assets can be leveraged up to a very large loan for the purpose of physical 
capital purchases.  An extreme example again using housing markets illustrates this:  
suppose that $1 of financial assets could be leveraged up to obtain a loan that can pay for 
a $1,000,000 house.  In this case, R = 1,000,000.  If R is only government regulation, it is 
quite lax regulation!  To also use other language introduced earlier, the marginal 
borrower in this case has a lot of “fragility” in the sense that if some shock (either 
personal or aggregate) affects his ability to repay the remainder of his loan, he may be 
more hard-pressed to do so than if he were compelled, at his optimal choice, to put up 
more collateral to obtain the loan (which is tantamount to a lower, finite, value of R > 0).   
The example makes the point that, whether it is controlled just by the government or by 
some combination of government and private-market conditions, an extremely high R 

effectively renders moot the financing constraint even if 0STOCKr r  .   
 
Stated more formally, the mathematical limit 
 

 
1

lim 0
1

STOCK

R

r r

r R

 
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shows the result that 0   as R .  Financial markets or sub-markets sometimes 
seem to be characterized by very lax regulation for one reason or another; some 
economists and policy officials interpret the events in housing and housing-mortgage 
markets in the years leading up to 2007 and 2008 as being excessively lax. 
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Capital Demand Function 
 

With the condition 
1

1

STOCKr r

r R


 
   

 (which, recall, is nothing but the first-order 

condition on stock), the next step we can take is to jointly analyze it simultaneously with 
the first-order condition on k2.  The resulting condition characterizes the capital demand 
function.  To obtain the capital demand function, we do not have to proceed this way.  
We could instead directly analyze the first-order condition on k2 above because it does 
contain the critical object λ, and it is shifts in the capital demand function induced by 
changes in λ that is the economic issue of interest.  But, combining the first-order 
condition on k2 with the first-order condition on a1 in order to eliminate λ allows us, in 
this case, to think more directly in terms of economics. 
 
As in Chapter XX, let’s specialize attention to the Cobb-Douglas production function, 

1( , )f k n k n  , which has associated marginal product of capital 
1 1

2 2( , )kf k nn k    .218  Some algebra is again involved in obtaining an analytic form 

for the capital demand function, and the derivations appear in the Appendix.  Proceeding 
here directly to the resulting expression, the capital demand function is characterized by 
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which is a generalization of the simpler capital demand function that appeared in Chapter 
XX.  The formal way to see this is to again consider the mathematical limit as regulation 
R becomes very lax, 
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The right-hand side is simply the marginal product of capital for the Cobb-Douglas 
production function, in which case the standard condition 2 2( , )k kr nf  emerges.   

 
For the accelerator analysis below, we will consider the case in which R is strictly 
positive, but is not so large that it can be considered to be infinite.  That is, our 
benchmark for the rest of the analysis will be a finite positive R, (0 )R  .  The 

interest is then on how changes in the STOCKr r  term affect the capital investment 
demand function.   
 

                                                 
218 Note that we are abstracting from total factor productivity (TFP), for the sake of some parsimony in the 
notation.  But TFP could easily be introduced in exactly the same way as in the basic firm analysis. 
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All of the analysis up to now can be thought of as partial equilibrium (that is – one small, 
atomistic firm) in nature.  For the rest of the analysis, we switch to a general-equilibrium 
viewpoint (the representative firm) because we will be describing the stages through 
which, among other effects, the equilibrium quantity of investment is affected.  Because 
it allows intuition to be described in a clear way, a good starting point is exactly the 
capital demand function from Chapter XX.  The downward-sloping capital demand 
function qualitatively plotted in black in Figure 86 represents the basic capital demand 

function (that is, under the case λ = 0, which results if 0STOCKr r  ).219  Also indicated 
is the profit-maximizing quantity of physical capital investment, which is simply the 
equilibrium in Figure 86; this is a key point for the subsequent analysis. 
 

 
Figure 86.  Equilibrium in the physical investment market, in the case of financing constraints not affecting 
capital demand at all, due to r – rSTOCK = 0. 

 
Labor Demand Function 
 
Before proceeding to the accelerator effect itself, let’s briefly consider labor demand.  
The first-order conditions on n (regardless of time period) do not directly contain λ.  The 
financing constraint thus apparently does not directly shift the labor demand conditions at 
all.   
 
The result is more nuanced, however, and it depends on the depth of analysis we are 
considering.  If we take functional forms and the values of k (in particular, it is k2 that is 
important for the accelerator effect in the formal model) as given, then we arrive at 
exactly the conclusion reached above:  the financing constraint does not affect the labor 

                                                 
219 Just as in our basic firm analysis, the diagram is qualitative because it uses linear functions, even though 
the Cobb-Douglas function implies strictly convex functions.  For our qualitative purposes, this is 
sufficient. 
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demand functions.  Intuitively, this (non-)effect arises from the fact that nothing 
regarding n appears in the financing constraint. 
 
However, in doing a complete joint analysis of the firm’s optimal decisions for both labor 
and capital, the optimal value of k2 in principle can be different from the one that is 
optimal in the basic firm analysis of Chapter XX.  Inserting this possibly new value of the 
optimal k2 into the first-order condition on n shows that the labor demand function would 
in principle be “shifted” after all. 
 
This complete joint solution is not difficult to obtain, but it requires a little more algebra 
than just examining whether, conditional on functional form and a particular value of k 
(whether or not it is the optimal k), the labor demand function shifts.  As we have 
encountered a few times in earlier models, the issue is one of partial-partial 
equilibrium (analyzing the implications of only the first-order condition on n and no 
other expressions) versus partial equilibrium (analyzing the joint implications of both 
the first-order conditions on labor and capital).  In terms of vocabulary that we have also 
identically used earlier, the former corresponds to the case of zero first-order effects on 
the labor demand function; the latter corresponds to the case of examining higher-order 
effects on the labor demand function.  Zero first-order effects are simple to analyze 
graphically; the presence of higher-order effects are harder to analyze graphically, and 
they are instead more amenable to solving the model jointly for both the optimal k and 
the optimal n. 
 
Moving away from the details of the particular way in which we have constructed the 
accelerator framework, a broader reason that labor demand can be affected directly by 
financing constraints is if some aspect about labor expenditures directly appeared in the 
financing constraint.  Such a setup is also admissible.  In this case, the first-order 
conditions on n would directly contain terms arising from the constraint (in particular, 
would contain terms that involve λ).  The labor demand functions would then directly – 
that is, to first-order – be affected by the financing constraint.  But our baseline 
accelerator model is not set up this way. 
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Analysis Part II:  The Accelerator Effect 
 
We now proceed to the accelerator effect itself.  The starting point is Figure 86, which is 

drawn for the case of 0STOCKr r  .  Figure 86 displays equilibrium in the investment 
market when the physical investment demand function is exactly the one studied in 
Chapter XX.  While we do not have to begin exactly here, this point of departure makes it 
simple to describe the ultimate economic insights; but the economics is the same if we 
start at some other equilibrium.   
 
Several points are worth clarifying before conducting the main analytical experiment. 
 
First, given (0 )R  , the main interest is in how changes in the interest rate gap 

STOCKr r  affect the investment demand function.  An important observation is that the 
accelerator model does not explain why the interest rate gap itself might change.  
Changes in the interest gap are thus viewed from the perspective of the model as shocks, 
in the way we have studied earlier.  The accelerator instead primarily focuses on 
understanding macro-finance dynamics following such shocks.   
 
Second, regarding directionality of shocks, the relevant experiment in the formal analysis 
is any shock that causes returns on risky financial assets to decline compared to returns 
on riskless assets.  That is, the relevant experiment is any shock that causes the gap r – 
rSTOCK  to become larger.  Consideration of the other direction for shocks is briefly 
discussed later, but is only qualitative due to the asymmetry of borrowing at the heart of 
the model.   
 
Third, the analysis is mostly graphical.  This is partly because the basic results are fairly 
intuitive, given the effort introducing the building blocks and the analysis already 
conducted.  A truly complete analysis would require much more numerical precision 
through computer simulations, which is beyond the scope of our analysis.  Rather, the 
goal here is to describe the insight of the accelerator effect, which is easy.  The analysis is 
also graphical because we will adopt an equilibrium-centered view, which requires both 
the demand and supply sides of the market, as shown in Figure 86. 
 
Fourth, to simplify the analysis even further, suppose that r is constant as rSTOCK  
declines.  As we will see as we work through the stages of the experiment, r itself will 
also decline (in equilibrium).  But the quantitative decline in r will not be as large as the 
(possibly very sharp) declines in rSTOCK (which again raises the issue of numerical 
solutions).  This simplification thus also does not obscure the economic insight. 
 
With these several points in mind, start from Figure 86 and consider a negative shock to 
rSTOCK  that causes r – rSTOCK  > 0.  Our analysis of the capital demand function above 
shows that the widening of the interest gap r – rSTOCK shifts it leftward.  This is plotted in 
Figure 87.  The adverse development in the rate of return on financial assets means that it 
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is now more expensive for a firm to use a given quantity of financial assets to back a loan 
to use for physical capital investment.  Starting from any point on the investment demand 
function, fewer capital goods can thus be purchased. 
 
 

 

Figure 87.  After a decline in rSTOCK relative to r, r – rSTOCK > 0, which shifts the physical capital 
investment function inwards.  

 
 
Next, focusing on an equilibrium-centric view, the equilibrium quantity of investment 
declines.  The pullback in investment in turn means that profits decline.  This effect on 
profits occurs because the starting point in Figure 86 was one in which profits were at a 
maximum.  Any other point thus necessarily implies smaller profits, including the new 
equilibrium level of profits in Figure 87.  
 
It is this stage at which the “accelerator” part of the framework kicks in.  The fourth 
building block of the model, which describes the fairly stable relationship between profits 
and dividends, means that dividends decline.  The return on risky assets is 

2 2

1

1 STOCK S D
i

S


   (or, to express it in real terms, 1+rSTOCK, divide 1+iSTOCK  by the gross 

goods inflation rate 1+π2).  The decline in dividends thus means that the return on risky 
assets declines even further.   
 
Note the very stark nature of this conclusion.   
 
The analysis began with an adverse shock to rSTOCK.  The background reason is unknown, 
due to its very nature as a shock, but it sets into motion some events.  One of the 
conclusions that the model then predicts is that rSTOCK declines even further.  Stated 



Spring 2014 | © Sanjay K. Chugh 366 

 
 
 

very bluntly, the input to the analysis is a negative shock to rSTOCK – and one of the 
outputs of the analysis is that rSTOCK declines even further.  In more technical terms, an 
exogenous negative shock to rSTOCK leads to the endogenous result that rSTOCK declines 
even further. 
 
You should stop and re-read the last few paragraphs again.  This is a very dramatic 
conclusion.  Its nature is not something we have seen before. 
 
This now predicted (endogenous) decline in rSTOCK causes the investment demand 
function to shift in even further than the shift illustrated in Figure 87.   
Figure 88 illustrates this further shift. 
 
 
 

 
Figure 88.  A further, endogenous, decline in rSTOCK relative to r makes r – rSTOCK even more strictly 
positive, which shifts the physical capital investment function even further inwards. 

 
Again taking an equilibrium-centric view, the equilibrium quantity of investment falls 
even further.  The decline in investment thus means that profits fall even further, because 
the market quantity has moved even further away from its starting point in Figure 86.  
The stable relationship between profits and dividends (the fourth building block) then 
predicts that dividends fall even further.  In turn, the return on risky assets falls even 
further – that is, by even more than illustrated in  
Figure 88.   
 
But this now predicted EVEN sharper decline in rSTOCK causes the investment demand 
function to shift inwards even further than the shift illustrated in  
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Figure 88.  But this means that equilibrium investment falls even further, which in turn 
means that profits decline even further, which in turn means that dividends fall even 
further.  But this means that the returns on risky assets fall EVEN further.  And the 
effects continue on and on. 
 
For parsimony, we will not sketch any further diagrams.  But it should be clear where 
things are heading from the point of view of the framework. 
 
They are heading towards a very severe and jointly-connected downward spiral in 
macroeconomic outcomes and financial outcomes.  This is exactly the accelerator effect:  
once a financial downturn (captured in this analysis by a decline in rSTOCK) begins, if it is 
sufficiently widespread, then the adverse feedback loop kicks in.  Intuitively, the adverse 
feedback loop arises due to the linkage between profits, which reflects fundamentally 
macro outcomes, and dividends, which are a fundamental aspect of finance. 
 
 

Discussion 
 
This chain of logic returns us to the very beginning of the chapter:  what are policy 
authorities to do in the face of such events?  In a short and almost, but not quite, facetious 
sense – who knows.   
 
In a slightly less short, and slightly more serious, sense – increase R.   
 
If we are thinking specifically about the events that occurred in the U.S. in 2007 and 
2008, the Federal Reserve, the U.S. Treasury, and many other regulatory agencies were 
trying to do exactly this – increase R.  What exactly was the nature by which R was 
increased, if it was successfully increased at all?  Thinking back to the events of that 
period, some assorted slices of policy were “quantitative easing,” “high-quality financial 
injections,” and some changes in the literal regulatory structure, which, along with other 
things, required some firms to hold on to larger quantities of financial assets on their 
balance sheets.  But these are all talking points, because the accelerator model does not 
take a stand on any of this.  As discussed when introducing the third building block, the 
model makes no prediction regarding R; rather, R is simply taken as given by the 
framework.   
 
What about the opposite of the situation analyzed above, in which rSTOCK increases 
relative to r?  It is again helpful to start this analysis with the case drawn in Figure 86, in 
which r – rSTOCK  = 0.  If rSTOCK   rises relative to r, then it is clear that r – rSTOCK  < 0.  If 
we follow the chain of logic and the exact analytical expressions of the arguments laid 
out above, then we would claim that λ < 0.   
 
But we know from our earlier discussion about the Lagrange multiplier that λ < 0 cannot 
occur at the optimal choice!  The smallest possible value of λ is λ = 0, at which point 
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there is no need for the firm to use loans backed by financial assets to help pay for 
physical capital purchases.  The accelerator effect by its very nature does not work in the 
opposite direction, and this follows from the asymmetry regarding borrowing already 
studied.  Or, stated in terms of Figure 86, there is an optimal, profit-maximizing, quantity 
of physical capital investment.  If the firm is given the chance to invest more in physical 
assets for a given market value of financial assets – that is, for the physical capital 
demand function to shift outwards at every r – it would optimally choose to not invest 
any further.  There is no “acceleration” on the upside.220 
 
The financial accelerator model has been in existence for decades.  In the U.S., events 
described by it do not occur very often – in the past roughly 100 years, the Great 
Depression and the “Great Recession” of 2007-2009 are really the only events that can be 
classified as accelerator periods.  But when they do occur, the adverse effects, or possible 
adverse effects, can be very pronounced.  The interpretation of many policy authorities 
and academic researchers is that the after-effects of the events of 2007-2009 are not yet 
over. 

 
 

 
 
 
 

                                                 
220 Stated more subtly, there could be acceleration for a while, but it would eventually choke off.  The point 
at which it would choke off is as soon equilibrium investment reaches the point at which it is truly profit-
maximizing, which was the highlighted point in Figure 86. 
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Appendix A:  Isolating λ from first-order condition on financial assets 
 
The following presents the algebra that isolates the Lagrange multiplier   from the first-
order condition on a1.  Repeated here for convenience is the first-order condition on a1, 
 

2 2
1 1 0

1

S D
S R S

i


     


. 

 
To isolate the   term, first rearrange this expression to get 
 

 2 2
1

1

1

1

S D
S

i R S
       

. 

 
Next, pull the S1 term outside the square brackets inside the square brackets, which gives 
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1

1 1
1

1

S D

S i R


 
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. 

 
Then, multiply and divide the second term in parentheses by P1 and P2, which gives 
 

 2 2 1 2

1 2 1

1 1
1

1

S D P P

S P P i R


 
       

. 

 

Using the definition of goods-price inflation between period 1 and period 2, 2
2

1

1
P

P
  , 

in both the numerator in denominator of the previous expression gives 
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
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. 

 
Next, insert the definition of the interest rate (or rate of return) on stock, 

2 2

1

1 STOCK S
i

S

D



 , to replace the term involving nominal prices and dividends of stock, 

which gives 
 

 2

2

11 1
1

1 1

STOCKi

i R
 


 

      
. 

 
Use of the usual Fisher relation allows us to express the rates of return in real units 
(rather than in nominal units), 
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. 

 
A final algebraic step inside the square brackets yields 
 

 
1

1

STOCKr r

r R


 
   

. 

 
This final expression is what is used in the analysis in the main text.  Despite several 
steps of rearrangement, note that it fundamentally is the same first-order condition on a1 
based on the Lagrangian. 

 
Appendix B:  Construction of capital demand function 
 
The following shows how to combine the first-order conditions on a1 and on k2 to obtain 
predictions about the capital demand function.  The reason both conditions are required is 
that the multiplier   appears in each.  Start with the expression for   obtained above 
(which is simply a re-expressed version of the first-order condition on a1) 
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r R

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and insert it in the first-order condition on k2 (which, repeated for convenience, is 
 

2 2 2 2
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). 

 
This gives the single expression 
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which will now be rearranged in several steps.  While there are several steps, keep in 
mind this is just algebra. 
 
First, divide the entire expression by P1, which gives 
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(in which we have also moved the –P1 term over to the other side of the expression in the 
same step).  Then, using the definition of inflation between period one and period two, 

2
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P
  , this expression becomes  
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Next, apply the Fisher relation, which gives 
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This expression is helpful because it shows that if STOCKr r  or if R , then the 
capital demand function obtained in basic firm analysis, characterized by 2 2( , )k kf n r , 

emerges. 
 

Going further is useful, though, if 0STOCKr r   (which in turn implies 0  ).  
Multiplying the previous expression by 1+r gives 
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, 

 or, canceling the 1’s on each side, 
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As in basic firm analysis, let’s focus on the Cobb-Douglas production function, 
1( , )f k n k n  , for the rest of the analysis.  This is simply because virtually all practical 

studies in macroeconomics use this particular form because it is empirically relevant; 
however, any production function that displays a constant elasticity of substitution 
between k and n (the Cobb-Douglas case is just one example) works.   
 
The Cobb-Douglas function implies that the marginal product of capital (in period two, in 
particular, which is the period of interest regarding the capital stock in the formal model, 
due to the fact that k1 is fixed at the beginning of period one) is 2

1
2

1
2 2( , )kf nk n k    .  

Substituting this in the previous displayed expression, 
 



Spring 2014 | © Sanjay K. Chugh 372 

 
 
 

1 1
2 2

STOCKr r

R
k n r   

 
 
 




. 

 
As in basic firm analysis, this expression defines the capital demand function, and we 
want to represent it in r-k2 space.  To get there, there is a bit more algebra to do, because 
we need to isolate the r terms on one side of the expression.   
 
Proceeding with this part of the algebra, first open up the term in square brackets, which 
gives 
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(which also interchanges the left-hand and right-hand sides of the expression for clarity).  
Then, combine terms involving the riskless rate r on the left-hand side, which gives 
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or, combining terms in the square brackets on the left-hand side, 
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Finally, multiply both sides by 
1

R

R
 to get the final form 
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which is the modified version of the capital demand function that appears in the main 
text.  As noted in the main discussion,  
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The right-hand side of which is simply the marginal product of capital from the Cobb-
Douglas production specification.  Thus, as R , the relation above converges to 

1 1
2 2k nr     , which is exactly the condition that characterizes the capital demand 

function in basic firm analysis. 


