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Chapter 26 
Long-Run Growth 

 
 
Most of our study focuses on short-run macroeconomic fluctuations, rather than long-run 
growth.  The basic growth framework is important because the heart of modern business-
cycle study is tightly connected with growth analysis. The Solow Growth Model (and 
later offshoots) has shaped the way economists approach both long-run growth issues and 
shorter-run business-cycle fluctuations. 
 
Long-run growth is concerned with how an economy develops over long periods of time.  
From a utility-maximizing, or welfare-maximizing, perspective, the metric of 
development in principle should be something akin to “utils.”  This concept of an 
economic standard of living is of course a fiction, so it cannot be measured empirically. 
 
Although it can be criticized on several fronts, the main empirical metric used to judge 
economic standards of living in an economy is real GDP per capita (i.e., GDP per 
person).  Thus, economic growth is measured as growth over long stretches of time in 
real GDP per capita.   
 
For much of history, there was essentially zero economic growth. 
 
Over the past two to three centuries, however, economic growth has been positive.  
Several reasons (this list is admittedly short) seem to be the Industrial Revolution, the 
invention of the printing press, refrigerators, the development of personal computers, the 
widespread use of the Internet, and the concomitant ease of world-wide communication.  
Nonetheless, growth rates still vary widely from one region of the world to another, as 
well from one country to another. 
 
There has been much debate about whether growth rates should imply convergence of 
real GDP per capita across countries.  The idea of convergence is that over long periods 
of time, per capita GDP should equalize across even widely-differing countries, due to 
eventual technological diffusion.  Evidence on convergence, however, has been mixed.  
Qualitatively, it seems many industrialized nations have indeed more or less converged to 
similar “standards of living.”  However, many developing countries are stuck at far lower 
standards of living, despite some periods of “catch-up.” 
 
A caveat before developing the Solow framework.  It is sometimes informally referred to 
as the “neoclassical growth model.”  However, this is not true.   In the “neoclassical 
growth model,” savings decisions are determined by consumers’ (or firms’) optimality 
conditions.  In the Solow model, there is no decision-making or “optimal choice” of 
savings; rather, the savings in which the economy engages is strictly a parameter.  
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We proceed as follows.  First, the exogenous sources of growth are described.  Next up is 
the manner by which inputs are transformed into output in the growing economy and how 
resources are saved over time.  To obtain a solution, we have to detrend the model, 
which itself is an inherent connection between growth analysis and business-cycle 
analysis.  After detrending, we compute an analytical result for the long-run capital stock, 
and how it depends in natural ways on, among other things, aggregate savings 
propensities and technological innovations of different societies. 
 
 

Solow Growth Model 
 
A foundational model of economic growth is commonly attributed to Robert Solow in the 
1950’s.  Many other innovators also helped shaped the basic framework – such as Trevor 
Swan and Nicholas Kaldor, to name two – but Solow’s continued development of the 
framework and future Nobel Prize cast him in the spotlight.   
 
The Solow model takes a production-function approach to explain how per-capita real 
GDP increases over time.  Figure 95 displays the exponential growth of per-person real 
GDP in the U.S. economy since the National Income and Product Accounts (which is the 
GDP accounting expression, GDP = C + I + G + NX) began during the Great Depression.  
The population growth rate over the past century has averaged about 1.3%, which 
emphasizes that Figure 95 shows per-person real GDP growth.   
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Figure 95.  Real GDP per capita in the U.S.. 

 
Applied to long-run analysis, the Solow framework is fundamentally about how, why, 
and how quickly an economy accumulates physical capital.  There are a number of 
assumptions the framework makes (as does any framework) in studying the dynamics and 
implications of this model.  Some of these assumptions can be rightly criticized as being 
too unrealistic.  However, the model is extremely valuable in that it provides a useful 
benchmark for the performance of both other models of long-run growth as well as short-
run fluctuations.  Moreover, a framework that both performs better and simpler to use has 
not been fleshed out in the more than half century since Solow’s model became 
prominent. 
 
 
Exogenous Sources of Growth 
 
The total physical capital stock of an economy K and the total number of people N are the 
productive factors that in tandem construct total goods and services in the economy. The 
total quantity of goods and services built in an economy is the definition of GDP, which 
is denoted by Y. 229 
 
The Solow framework asserts that long-run growth factors are exogenous to the 
economy.  That is, they are inputs into the analysis, not outputs resulting from the 
analysis.  There are various exogenous growth factors we could consider; we will focus 
on two. 
 
One main exogenous source for economic growth is population growth grN, defined as  
 

 1 1 1t t t
N

t t

N N

N

N

N
gr   

 


 
 

, 

 
in which Nt represents aggregate employment in period t.   
 
Another input to economic growth is growth in the “productivity” of the economy.  
Broadly stated, “productivity” is how well or how easily the various factors of production 
mesh with each other in producing output.  One example is that the knowledge and skills 
of employees are getting better over time.  Another is that the quality of the physical 
machinery or computers or smartphones that one employee is working with to produce 
output is improving over time.   
 
Based on these examples, productivity is fundamentally considered to be “labor-
augmenting” or that the “effectiveness of labor” drives long-run growth.  Because of 

                                                 
229  Two notes.  First, K and Y are intentionally meant to be upper-case letters.  Second, N can be 
interchangeably be interpreted as total number of people or total number of hours. 
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long-lasting improvements in technology or skills, one employee can produce more 
output as time marches on.   
 
Whatever the various and many innovations over the decade have been, denote by Xt a 
worker’s labor-augmenting productivity during time period t, and its growth rate 
grX as 
 

1 1 1t t

t t
X

tX X X
gr

X X
  

  






. 

 
Both grN and grX are asserted to be constant for every time period, hence the lack of time 
subscripts.  As mentioned above, in the U.S. population growth rate has been roughly grN 
= 0.013 per year since 1900.  In principle we could allow these percentage growth rates 
grN and grX to vary over time, but that would start to bring us into the realm of business-
cycle analysis, which is not necessary to study growth.  Here, our focus is on long-run 
growth, so we can purposely omit shorter-run economic ups and downs. 
 
 
Aggregate Production Function 
 
The canonical production functional form for aggregate GDP is the Cobb-Douglas 
production function  
 

  1t t t tY XK N
    

 
in which α, which is a number between 0 and 1, measures the “importance” of K in 
the production of GDP.230  Consequently, the number 1-α, which also lies between 0 
and 1, measures the “importance” of XN in the production of GDP.231  The second 
argument XN is commonly known as “effective labor.”  The Cobb-Douglas production 
function is a workhorse in both the study of long-run growth and business-cycle 
fluctuations. 
 
To understand the economic importance of α, consider the extreme case of α = 0.  In this 
case, it is only worker’s labor efforts that create GDP – an economy’s production process 
is very labor intensive if α is close to zero.  On the opposite extreme, α = 1, labor efforts 
have virtually nothing to do with producing goods and services – this economy’s GDP is 
essentially entirely produced with machines and factories and robots, thus the economy is 
very capital intensive because α is close to one. 
 

                                                 
230 Note that this is not at all the same concept of α as in the Keynesian macroeconometrics frameworks. 
231 “XN” should not be confused with “NX” – the latter is the typical acronym for “net exports” (or, 
equivalently, the “trade balance”).   
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Naturally, different economies display varying degrees of capital intensity.  A widely-
accepted view is that the capital intensity of GDP production in advanced economies is α 
= 1/3, which arises from econometric estimation for the U.S. and other developed 
economies.  For the sake of generality, we will continue using the more general notation 
α. 
 

This  1t t t tY XK N
   form of writing the aggregate production function emphasizes a 

long-standing view that decades-long and centuries-long growth fundamentally occurs 
due to labor-augmenting productivity, which is the term Xt.  Alternative terminology 
for X is total factor productivity (TFP) or the Solow residual.232  We will use these 
three terms interchangeably.   
 
Regardless of terminology, this constantly growing Xt is the centerpiece of Solow growth 
analysis.  Difficult-to-measure changes in Xt over time could be thought of as a “measure 
of ignorance” about how various economies’ inputs – which are K and N – yield output 
Y.233   
 
 
Aggregate Savings and Aggregate Investment 
 
The Solow model is a closed economy structure, which implies that, in the basic GDP 
accounting expression, we have (GDPt  = ) Yt = Ct + It + Gt.  The GDP accounting 
equation is the resource frontier of the overall economy, which simply means that all 
goods produced – which is aggregate supply, the left-hand side of the accounting 
equation – are absorbed by one of the several expenditure components of aggregate 
demand (the right-hand side). 
 
Government spending is not crucial for the analysis of the Solow framework, so let’s 
simplify the resource constraint further to Yt = Ct + It.  Then, for ease of use below, let’s 
rearrange it as  
 

Yt – Ct = It. 
 
Next, using our definition of savings from the basic consumption-savings framework 
(recall the definition, St = Yt – Ct), we have that economy-wide savings is the source of 
funding for economy-wide investment, 

                                                 
232  An algebraic transformation allows us to equivalently express the production function as 

1
t t t tY A NK  .  The transformation to get from the X version to the A version is as follows:  

1 1
t t t tY K X N        

1 1
t t t tY X K N    .  Then define 

1
t tA X  , which gets us to 

1
t t t tY A NK  . 

233 In business-cycle analysis, this X  term also arises and plays an important role, but Solow never intended 
for it to be a critical component of the study of short-run ups and downs. 
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St = It, 

 
which is simply due to accounting identities.   
 
The Solow framework does not feature “optimizing” consumers or firms.234  Thus, there 
is no “consumption-savings optimality condition” that pins down St.   
 
The Solow framework asserts that aggregate savings is a constant fraction s (be 
careful between uppercase S and lowercase s!) of GDP in each period.  The 
relationship between the savings rate (0,1)s  (the percentage of savings) and 
aggregate savings St is 
 

t tS Ys  . 

 
Aggregate gross investment is defined as 
 
 1 1 )(t t tI KK    , 

 
in which (0,1)   stands for the rate of depreciation of capital Kt used in the period-
t production process.  It is natural that capital depreciates, or wears out, over time.  
Physical equipment, such as factories, engines, printers, computer monitors, and so on, 
naturally wear down, or simply become obsolete, over time.  This is the notion that is 
captured in the depreciation concept.  The assumption of constant depreciation over time 
is a decent approximation to what empirical studies suggest is the annual rate of 
depreciation of the U.S. capital stock, which is approximately 8% per year, hence δ = 
0.08 for the U.S. economy at an annual frequency.  The quantity of capital goods that 
depreciates during the production process of period t and thus can no longer be used 
in period t+1 is δKt.   
 
Note the use of the word “gross” in the definition.  If capital never depreciated – that is, if 
δ = 0 – then the definition above boils down to 1

net
t t tI K K  , which is known as 

aggregate net investment (hence the superscript “net”).  Thus, δ = 0 implies that 
net

t tI I .   Because capital gradually wears out during usage in the production process, 
net

t tI I .  Thus, some portion of It is replacement investment, and the rest is directed 

towards accumulating the physical capital stock. Empirically, it is gross investment It that 
is measured in the GDP accounts.  
 
 

                                                 
234 Recall from our study of the history of macroeconomics, microeconomic-level optimization structures 
came into use for macroeconomic analysis after the Lucas Critique of the late 1970’s. 
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Equilibrium 
 

To develop an equilibrium for this model requires both using the relationships described 
in the previous section and normalizing, or de-trending, the framework in an 
appropriate manner.    
 
First, using the relationship t tS Ys  , equating aggregate savings with aggregate gross 

investment gives 
 

t tI Ys  . 

 
Next, using the definition of aggregate gross investment to substitute for It, we have 
  

1 (1 )t t tYK sK    , 

 
an important expression to which we will soon return. 
 
If the economy being analyzed displays non-negative long-run growth (which is the 
perspective we adopt), 0Ngr   and 0Xgr   must both be true.  In turn, Yt would grow 

explosively over the decades and centuries, as Figure 95 suggests. 
 
The Solow framework (indeed, all of our macro frameworks) cannot handle “infinite” 
levels of GDP, or, for that matter, infinite quantities of consumption or savings or 
investment.  The framework thus must be normalized, or scaled, in an appropriate 
manner.  The appropriate scaling factor(s) is (are) the exogenous source(s) of growth.  
Referring to business-cycle analysis, this process is exactly the detrending procedure! 
 
In our setup, the two sources of growth are population and labor-augmenting 
productivity.  Hence, the appropriate scale factor in any given time period is X N .  To 
perform the detrending, let lowercase letters denote per unit of effective labor variables.  
Define 
 

  and  t t
t t

t t t t

Y K
y k

X N X N






 

 
as GDP per unit of effective labor and capital per unit of effective labor, respectively.  
For ease of language from here on, we will refer interchangeably refer to “per unit of 
effective labor” as per capita. 
 
Using the definitions of “per-capita” yt and “per-capita” kt, the GDP production function 

 1t t t tY XK N
   can be rewritten in per-capita terms with a few algebraic steps.  First, 

detrend these variables, which gives us 
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t t t t t t

N

N N N

Y K X

X X X

 
   

    
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
  

.  

 
Next, use the definitions to rewrite as 
 
 11t ty k  .  

 
As per basic mathematics, 11 1  , thus the aggregate production function is simply 
 

t ty k . 

 
This function expresses per-capita output as a function of the per-capita capital stock; it is 
illustrated in Figure 96.  A crucial point to notice is that because α  < 1, the production 
function displays diminishing marginal product in capital.  Also illustrated in Figure 
96 is the per-capita savings function, which, in the Solow framework, is per-capita output 
times the savings rate (0,1)s . 
 

per-capita 
variables

per-capita 
capital k

per-capita 
output y

per-capita 
savings = sy

savings ( = investment)

consumption

 
Figure 96.  The decomposition of output y between savings for the future (in red) and immediate 
consumption. 
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To analyze k in the Solow model, begin with 1 (1 )t t tYK sK    , which first has to be 

stated in detrended terms.  Proceeding step by step with the algebra, first divide by XtNt, 
which gives 
 

1 (1 )t t t

t t t t t t

K K Y

N X N
s

X NX
 

 



  . 

 
Next, substitute the yt and kt definitions into the right-hand side and the second term on 
the left-hand side, which leads to 
 

1 (1 )t
t t

t t

K
sk y

NX
   


, 

 
or, rewritten slightly using the per-capita production function t ty k ,  

 

1 (1 )t
t t

t t

K
k k

N
s

X
   


. 

 
All of these terms are now normalized, with the important exception of the first 
expression on the left.   
 

To detrend 1t

t t

K

X N



, multiply and divide it by 1 1t tX N  , so that the previous expression 

can be stated as 
 

1 1 1

1 1

)(1t t t
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N
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N

K X
s

X X N
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  
  

. 

 
To continue proceeding, a couple of observations are required.  First, the bracketed term 

1

1 1

t

t t

K

X N


 
  is simply kt+1 by definition!  Second, notice that 1 1t

N
t

N
gr

N
    reflects the 

population growth rate; similarly, 1 1t

t
X

X
gr

X
    reflects the growth rate of technology.   

 
Inserting these definitions leads to  
 

1 (1 (1 ) )) (1t X N t tgr gr kk ks       . 

 
After two more steps of algebra, a final rewriting is 
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which emphasizes kt+1 on the left-hand side.  This expression is the equilibrium law of 
motion for the (per-capita) capital stock k in the Solow model.   
 
The equilibrium law of motion is the heart of the framework.  The law of motion states 
that for given values of s, α,  grX, grN, and δ, the beginning-of-period t+1 capital stock 
kt+1 is completely determined by kt.  Figure 99 below, which we will consider at more 
length soon, plots the law of motion. 



Spring 2014 | © Sanjay K. Chugh 399 

 
 
 

 
Long-Run Capital Stock 
 
Figure 97 describes the steady-state equilibrium for the capital stock k.  We can solve for 
steady-state k* analytically, which is a powerfully sharp result of the Solow 
framework.235  Several steps of algebra will get us there. 
 
The most important step is to begin by imposing kt+1 = kt = k* in the law of motion.  If 
the economy arrives at k*, then the equilibrium law of motion tells us that it will remain 
at k* forever.  Mathematically, a steady-state is the condition at which an object 
stops evolving over time; dropping time subscripts is the way to operationalize a 
steady-state.   
 
Imposing steady state in the law of motion gives us 
 

 * *
* )

(1 (1 ) (1 (

(1

) ) 1 )X N X N

k k

gr gr gr gr

s
k




 



     
. 

 
The remainder of the algebra is to isolate the k* term.   
 
From this previous expression, subtract the second term on the right-hand side, which 
yields 
 

 *

* 1
1

(1 ) (1 ) (1 ) (1 )NX XN

k

gr gr
k

gr gr

s


  
        

 . 

 
The additive terms in square brackets can be combined so we have 
 

 *

* (1 ) (1 ) (1 )

(1 ) (1 ) (1 ) (1 )
X

X

N

N NX

kgr gr

gr g

s

r gr gr
k


      

        
 . 

 
Next, cancelling the ) (1 )(1 X Ngrgr    terms allows us to simplify a bit to arrive at 

 

   * *(1 ) (1 ) (1 )X Ngr grk ks


       . 

 
Collecting the k* terms on both the left-hand side and the right-hand side, and shifting the 
square-bracketed term to the right-hand side gives 

                                                 
235 Impressive both in the 1950’s and still today, and continues to be the foundation of modern business-
cycle analysis. 
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Finally, raise both sides of the expression to the power 
1

1 
 to obtain the analytic 

steady-state k*, which is the main result of the Solow analysis. 
 
 
 
Solow Framework Steady-State k* 
 

1

1
*

(1 ) (1 ) (1 )X N

s
k

gr gr





 
       

. 

 
 
 
This Solow steady-state expression for k* contains several parts.  To consider the basic 
economics, suppose there is neither population growth nor technological growth, which 
means 0X Ngr gr  .  Steady-state k* in this case is 

 

 

1

1
* s

k



    

 , 

  
which depends on the per-period savings rate s, the per-period depreciation rate δ, and the 
capital share α.  It is clear from this expression that for a given capital share α, either an 
increase in s or a decrease in δ leads to a higher steady-state capital stock k*.236  In turn, a 

larger value for steady-state GDP,  * *y k


 , is achieved. 

 
Stated in everyday terms, an increase in savings leads to an increase in wealth (wealth in 
this framework is the capital stock k). 
 
Left for you as exercises are further comparative statics of k* (and hence of y*, which, by 
definition of steady state, is also constant) with respect to the set of other parameters:  

 ,, X Ngr gr . 

 

                                                 
236 Stated mathematically, the steady-state elasticity of k* with respect to s is strictly positive, and the 
steady-state elasticity of k* with respect to δ is strictly negative.   
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Regardless of precise parameter values for  ,, , ,X Ngrgr s  , the phase diagram in 

Figure 97 displays the steady-state equilibrium  k* as the intersection of the savings 
supply function and the replacement investment demand function (or, equivalently 
stated, the “break-even” investment demand function).  In steady-state equilibrium, 
the quantity of replacement (“break-even”) investment demanded is simply that required 
to replace depreciated capital ( k ), plus the additional per-capita resources for 
population growth ( Ngr k ), plus the additional per-capita resources for technological 

growth ( Xgr k ). 

 
If the economy achieves equilibrium k*, there will be no further change in k.237   
 
 
 

per-capita 
variables

per-capita 
capital k

per-capita 
savings = sy 

( = skα)  

k* = 
steady-state 
capital stock

per-capita break-
even investment 

= (grX + grN + δ)k

 
Figure 97.  Intersection of savings function and break-even (alternatively, replacement) investment 
function determines the long-run (aka steady-state) level of physical capital. 

 

 

                                                 
237 In terms of differential equations (or the discrete time analog we are considering here, which are 
difference equations), k* is a stable steady state of the economy – once it reaches k*, it will never depart 
from it.  Unless, that is, some “shocks” cause it to, which is the point at which modern macroeconomic 
business-cycle analysis begins.  
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Transitional Dynamics of Growth 
 
That leads to a next natural question:  if the economy is away from steady-state k*, how, 
if at all, does it converge to k*? 
 
To consider convergence, we return to the fully-fledged dynamic law of motion for the 
capital stock 
 

1

)

(1 (1 )

(1

) ))(1 (1
t t

t
X N X N

k k

gr gr g r

s

r g
k

 



     

  , 

 
with time indices explicitly included.  The timeline in Figure 98 is helpful for the 
analysis. 
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Period ∞ 

k* k*

Economy produces y* units of 
output, of which fraction s is 

saved/invested as new k (= k*). 

The fraction δ of previously 
existing k* depreciates.

k* stops evolving over time.  

… … …

Period 1 

k1 k2

Economy produces y1 units of 
output, of which fraction s is 

saved/invested as new k2. 

The fraction δ of previously 
existing k1 depreciates.

  

Period 2

Period 3

Period 4

...

Period t-1

Period t 

kt kt+1

Economy produces yt units of 
output, of which fraction s is 
saved/invested as new kt+1. 

The fraction δ of previously 
existing kt depreciates.

  

Period t+1

Period t+2

Period t+3

...

… … …

STARTING
POINT

ENDING 
POINT

Population grows at rate grN

TFP grows at rate grX  
  

Population grows at rate grN

TFP grows at rate grX  
  

Population grows at rate grN

TFP grows at rate grX  
  

 

Figure 98.  Timeline for dynamic long-run growth analysis.  Eventually, the economy reaches the long-run (or steady-state) per-capita capital stock k*.   
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Consider an economy in period t – let’s call it an “emerging economy” – that has kt < k*.  
The question to be answered is:  is kt+1 closer to k* than kt is, or is kt+1 further away 
from k* than kt is?  In other words, is the economy towards its steady state or away 
from its steady state? 
 
The mathematical details of the solution are left to a more advanced course.238   In a 
nutshell, though, the law of motion answers the question:  kt+1 > kt , thus kt+1 is closer to 
k* than was kt.   Repeating this logic forward, the law of motion informs us that kt+2 > 
kt+1 , thus kt+2 is closer to k* than was kt+1.  Iterating the logic forward yet again, the 
law of motion tells us that kt+3 > kt+2 , thus kt+3 is closer to k* than was kt+2.  And so on, 
until the capital stock converges to k*.  
 
The economics of convergence is due to the concavity of the production function (given 
that (0,1)  ).   The phase diagram in Figure 99 conveys this point.  Note carefully the 
axes in Figure 99:  kt appears on the horizontal axis, and kt+1 appears on the vertical axis.  
Figure 99 is thus fundamentally about the dynamic growth path of the economy. 
 

per-capita 
capital kt+1

per-capita 
capital kt

k* = 
steady-state 
capital stock

 

kt+1 = kt
(the 45-degree line)

per-capita 
savings = sy 

( = skα)  

initial level of 
capital stock

klow =

k* 

 
 

                                                 
238 The mathematics involves various stability theorems regarding difference equations. 
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Figure 99.  Dependence of kt+1 (vertical axis) on kt (horizontal axis), as embodied in the equilibrium law of 
motion for capital k.   

 
   
Figure 100 illustrates the same convergence idea in different coordinates.  Figure 100 
shows that if k < k*, per-capita savings is larger than per-capita break-even investment.  
Hence, the quantity of new capital produced is higher than that required for the break-
even condition. The total stock of capital therefore rises. 

 

per-capita 
variables

per-capita 
capital kk* = 

steady-state 
capital stock

klow 

per-capita 
savings = sy 

( = skα)  

per-capita break-
even investment 

= (grX + grN + δ)k

 

Figure 100.  If k is below k*, savings exceeds break-even investment, causing k to increase and converge 
towards k*. 

 
The mechanism by which the capital stock decreases until it hits steady state if it starts 
above k* is analogous – the above logic simply operates in reverse.239 
 
 
Shortcomings of the Solow Growth Model 
 
One major shortcoming of the Solow model is that it predicts that each country 
eventually converges to steady state.  If one believes that “mature” economies (such as 
the U.S., the western European economies, Japan, and so on) have all converged to their 

                                                 
239 You should work through this logic yourself. 
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steady states,240 then we should observe identical per-capita capital stocks in all mature 
economies.  But this is not what evidence shows. 
 
One highly plausible modification to the theoretical model is to allow different countries 
to have different savings rates.  That is, even if economies have the same production 
processes, perhaps one country has aggregate savings = 1s y  and another has aggregate 

savings = 2s y .  As long as they both have the same depreciation rates (and growth rates 
of population and exogenous technological change), the steady-state level of per-capita 
capital in the two economies will be different, as seen in Figure 101.  Referring back to 
Figure 96, this implies different “propensities to consume” across economy 1 and 
economy 2.  The economy with the lower propensity to consume – and hence the 
higher propensity to save – eventually reaches a higher value of steady-state per-capita 
capital and hence a higher value of per-capita GDP. 
 

per-capita 
variables

per-capita 
capital k

per-capita 
savings = s1y

k*

per-capita 
savings = s2y

k*

economy 1 economy 2

per-capita break-
even investment 

= (grX + grN + δ)k

 
Figure 101.  Different rates of savings.  The economy with savings rate s2 > s1 converges to higher steady-
state per-capita k*. 

 

                                                 
240 Which at first blush is not a terrible hypothesis – these economies have had a lot of time to converge to 
their supposed steady states. 
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Another feature of the Solow model that could be extended is to allow for different 
depreciation rates of capital in different economies.  It is left to you as an exercise to 
show that different values of δ across countries would imply different long-run capital 
stocks.241 
 
A seeming shortcoming of the model’s predictions is the implication that economies 
eventually reach a state of zero growth.  That is, once steady state is k* achieved, 

regardless of the precise savings rate s or other parameters  ,, ,X Ngg rr  , it seems there 

is no further economic growth:  actual investment always equals break-even investment 
forever after convergence is achieved.  Casual inspection of the diagrams in Figure 99 or 
Figure 100. 
 
The message, however, is more subtle. 
 
Diagrams such as Figure 99 or Figure 100 seem to show that growth eventually shrinks 
to zero.  But recall that “per-capita” is a shorthand way of stating per-effective units of 
labor.  In order to conduct our analysis, we detrended the model by effective units of 
labor XN. 
 
If we “reverse” the detrending procedure that allowed for a finite value for k*, we see 
that the overall, actual, economy being analyzed is experiencing positive growth as 
long as the population is growing or some relevant notion of productivity is growing. 
 
Which of these two concepts of “growth” is more important – “per-capita growth,” or 
“overall” growth – is left for the reader to decide.  But the universal consensus amongst 
economists is that per-capita growth is the notion that is of utmost importance.   
 
Empirical consensus thus far indicates that most economists do not believe the U.S. has 
permanently stopped growing, despite the recent downturn.  The population growth rate 
has been declining for several decades (that is, grN , though positive, seems to be 
declining over the past several decades, which is not be confused with grN < 0). 
 
Which then implies that sustained long-run per-capita growth must be driven by the 
exogenous technological growth rate grX.  The idea proposed by Solow was that there are 
some components of production, and hence economic growth, which are essentially 
impossible to quantify – a “measure of ignorance” of economists, if you will.  One can in 
principle measure the quantity of machines, computers, trucks, airplanes, and so on that 
are being put to productive purposes.  Similarly, one can measure the number of people 
employed. 
 

                                                 
241 Also left to you as exercises is to show that different values across countries of either exogenous 
population growth grN or exogenous technological progress grX would imply different long-run per-capita 
capital stocks. 
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Given these measures, if it turns out that k   does not equal the measured quantity of 
goods and services y, then there is something else out there, some other valuable and 
productive “knowledge-based” input, that matters for sustainable growth. 
 
What does this unknown productive input represent?  Is it clean water supplies that 
are delivered unnoticed to your faucet?  Is it the sudden emergence of refrigerators that 
allowed families to save food for the coming weeks?  Is it the widespread use of 
automobiles that sprang up in the first half of the 20th century?  Is it the rapid adoption 
during the 1980’s of the Microsoft Windows operating system?  Or Apple’s sheeny, 
have-to-have-it tech products?  Or smartphones and smart-tablets?  Perhaps it’s the social 
networking that the smart-stuff enabled? 
 
Probably all of these. 
 
But these leaps in technology are hard to measure before they occur.  Who could have 
predicted that Apple would make a big splash in the 1980’s ….and then would near 
bankruptcy in the 1990’s…and then would a decade later magically take over a huge 
segment of the music industry and communications? 
 
Other than maybe Steve Jobs himself, probably very few. 
 
These leaps in technology and innovation may be the prime “measure of ignorance” in 
the Solow model. 
 
But inputting this in the Solow model, increases in productivity would rotate the 
production function up (in a non-parallel manner, because zero capital input would still 
yield zero output).  An upwards shift in the production function would then cause an 
upwards shift in the savings function, even if the savings RATE s does not change.  
This can be seen in Figure 102. 
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per-capita 
variables

per-capita 
capital k

per-capita 
savings = sy

k*

per-capita 
output y

due to an increase 
in productivity

 
Figure 102.  An increase in total factor productivity increases the total quantity of goods and services 
produced, holding fixed the break-even rate (grX + grN + δ) and the savings rate s.  In turn, steady-state k* 
increases. 

 
From the perspective of the Solow growth model, the primary reason for inexorable long-
term economic growth, at least in mature economies, is continuing technological 
innovation.  However, the Solow model does not have anything to say about why this 
ever-advancing technology occurs.   
 
Endogenous growth theory attempts to address the “why” question.  An overview of 
endogenous growth appears below.  It is very brief, though, because the main thread of 
“macroeconomics” – which is business-cycle analysis – is not based on endogenous 
growth.242 
 
 

Endogenous Growth Theory (aka New Growth Theory) 
 
The main focus of endogenous growth theory is to offer explanations to address the 
shortcomings of the Solow model, namely that in the long run economic growth ceases – 
or, if growth continues, it occurs because of some unexplained change in the state of 
technology. 

                                                 
242 Indeed, it has proven difficult so far for “mainstream” macroeconomic theory (in particular, when 
shocks are included in the framework) to be built on top of endogenous growth models.  The profession 
still awaits an innovation on this. 
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The main concept that endogenous growth theory applies to amend the Solow model is 
that there exist positive externalities 243  to innovation and research and development 
(R&D) activities.  For example, when a firm develops a new method for writing software, 
it will benefit that firm directly because of increased sales and the customers of the firm 
will benefit because of the new product.  However, other firms in the economy, simply by 
being exposed to the new ideas generated by the innovating firm, will also benefit.  The 
exposure to new ideas will presumably enhance their design and manufacture, etc. of new 
products – which in turn will help yet other consumers and lead to more ideas available 
for yet other firms to use.   
 
The positive externalities stemming from knowledge accumulation will occur even if 
innovating firms are granted patents or copyrights for their inventions and development.  
A patent or copyright indeed grants certain rights to its holder – but it cannot prevent the 
dissemination of ideas through an economy, and it is ideas that fundamentally drive 
technological progress.  Thus, in the language of the Solow growth model, the technology 
parameter X  increases over time – implying positive economic growth even in the long 
run. 
 
However, a firm, when deciding how much input to use in its R&D activities with the 
goal of create new products or services, will not take into account the positive 
externalities of its innovations.  In the language of the theory of externalities, the private 
(i.e., to the firm) marginal benefit from innovation is smaller than the social marginal 
benefit.  Or, another way of stating this is that the private marginal cost of innovation is 
larger than the social marginal cost of innovation.  Thus, the amount of resources that a 
firm will use for research and development purposes will be smaller than the amount of 
resources that it should use if it cared about maximizing the welfare of the entire 
economy.244 
 
The above discussion leads to a very important point:  there is clearly a role for 
government intervention in promoting innovation.  Assuming that governments do care 
about maximizing the welfare of its citizens (even when private firms seek only to 
maximize their own profits), various policies can be implemented which encourage the 
socially optimal amount of innovation to occur.  The most obvious in the context of the 
above example is for government to use public funds to subsidize research and 
development.  Such a policy would have the effect of lowering the private marginal cost 
of research – which then induces the firm to engage in the socially optimal amount of 
research and development. 
 
Because ideas can disseminate through the economy in the manner described, the original 
innovating firm cannot rest on its laurels.  It will know that other firms will soon try to 

                                                 
243 You should be familiar with the notion of externalities from basic microeconomics. 
244 Note that this does not imply that corporations are “evil” – they simply act to maximize their own 
private gain, which is what economics usually considers as the most rational goal. 
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copy its products and enhance them – which will spur the original firm to continue 
developing new ideas.  Thus, in this manner, the state of knowledge continually evolves.   
 
Other ways that governments can encourage technical progress are through encouraging 
international trade and improving the quality and quantity of education.  Again, both of 
these policies would expose domestic economic agents to more ideas (in the externality 
manner), which is the ultimate engine of economic growth. 
 
 


