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Chapter 8 
Infinite-Period Framework: 
Application to Asset Pricing 
 
 
Modern macroeconomic models used in applied research and for policy advice often 
suppose that there is an infinite number of periods, rather than just two as we have been 
for the most part assuming.  A two-period analysis is usually sufficient for the purpose of 
illustrating intuition about how consumers make intertemporal choices, but in order to 
achieve the higher quantitative precision needed for many research and policy questions, 
moving to an infinite-period model is desirable. 
 
Here we will sketch the problem faced by an infinitely-lived representative consumer, 
describing preferences, budget constraints, and the general characterization of the 
solution.  In sketching the basic model, we will see that in its natural formulation, it 
easily lends itself to a study of asset-pricing.  Indeed, this framework lies at the 
intersection of macroeconomic theory and finance theory and forms the basis of 
consumption-based asset-pricing theories.  We will touch on some of these macro-
finance linkages, but we really will only be able to whet our curiosity about more 
advanced finance theory.  For the most part, we will index time by arbitrary indexes 

1, , 1t t t  , etc., rather than “naming” periods as “period 1,” “period 2,” and so on.  That 
is, we will simply speak of “period t,” “period t+1,” “period t+2,” etc., as Figure 43 
displays. 
 
Before we begin, we again point out that “the consumer” we are modeling is a stand-in 
for markets or the economy as a whole.  In that sense, we of course do not literally mean 
that a particular individual considers his intertemporal planning horizon to be infinite 
when making choices.  But to the extent that “the economy” outlives any given 
individual, an infinitely-lived representative agent is, as usual, a simple representation. 
 
 

Preferences 
 
The utility function that is relevant in the infinite-period model in principle is a lifetime 
utility function just as in our simple two-period model.  As before, suppose that time 
begins in period one but now never ends.  The lifetime utility function can thus be written 
as 
 1 2 3 4 5( , , , , ,...)v c c c c c . 
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This function describes total utility as a function of consumption in every period 1, 2, 3, 
… and is the analog of the utility function 1 2( , )u c c  in our two-period model.  The 
function v  above is quite intractable mathematically because it takes an infinite number 
of arguments.  Largely for this reason, in practice an instantaneous utility function that 
describes how utility in a given period depends on consumption in a given period is 
typically used.  The easiest formulation to consider is the additively separable function, 
 
 2 3 4

1 2 3 4 5 1 2 3 4 5( , , , , ,...) ( ) ( ) ( ) ( ) ( ) ...v c c c c c u c u c u c u c u c         , 

 
where (.)u  is the instantaneous utility function.  As written, period-t utility depends only 
on period-t consumption.59  We will discuss the term β that we have introduced into this 
utility function below. 
 
There is nothing special about a “period one.”  It is just as informative to assume that 
decisions occur in period t, meaning that decisions about t-1, t-2, etc. quantities cannot be 
undone.  Thus, at the beginning of period t, the planning horizon remaining in front of the 
consumer is , 1, 2,...t t t  .  In our infinite-period model, we will thus adopt the 
convention that decision-making in period t is under consideration.  Thus the relevant 
lifetime utility function for the representative consumer when making decisions in period 
t is 

 2 3
1 2 3

0

( ) ( ) ( ) ( ) ... ( )s
t t t t t s

s

u c u c u c u c u c   


   


      .  

The summation operator on the right-hand-side is a useful way of representing the utility 
function. 
 
 

Impatience 
 
We have also introduced a time discount factor, denoted  , in the above formulation to 
represent the idea that utility further out in the future is not as valuable as utility closer in 
time to the present moment.  The discount factor   is a value between zero and one.  
The way we have written the above lifetime utility function, we are assuming we are 
currently in period t, because period-one utility is not discounted at all by  .   
 
The parameter   is meant to be a crude way of modeling the idea of “impatience.”  It 
probably strikes us all as generally reasonable to think of humans as impatient beings:  all 

                                                 
59 This itself may strike you as an unnecessary assumption.  Indeed it is unnecessary, except that until 
recently computational limitations made this assumption an often practically necessary one.  More recently, 
time-non-separable preferences, in which an instantaneous utility function of the form 1( , )t tu c c   have 

gained increasing popularity, mostly because they have proven useful in resolving some anomalous 
predictions of first-generation representative consumer macro models. 
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else equal, most of us (all of us?) would prefer to have x units of goods right this instant 
rather than one year from now, and we would probably also prefer to have those x units 
one year from now rather than two years from now.  The time discount factor β gets at 
this idea:  because  β < 1, a given quantity of period-(t+1) consumption does not generate 
as much utility as does the same quantity of period-t consumption when viewed from the 
perspective of period t.  Furthermore, when viewed from the perspective of period t, a 
given quantity of period-(t+2)  consumption does not generate as much utility as does the 
same quantity of period-(t+1) consumption.  To capture this idea, we have introduced the 
β2 term in front of u(ct+2):  because β < 1, β2  < β; this gets at the latter idea.  By analogy, 
we have introduced β3 in front of u(ct+3), β

4 in front of u(ct+4), and so on. 
 
Whether the idea of impatience can be modeled simply as a “number between zero and 
one” is obviously quite debatable.  Furthermore, whether impatience “builds up” over 
time by simply raising β to successively higher powers is obviously quite debatable.  
Crude or not, it does at least allow us to start getting at the idea of impatience.  As we 
will see more often as we build ever-richer models, even making a start on formally 
modeling an idea is often great progress. 
 
 

Assets and Budget Constraints 
 
As in the two-period model, the consumer faces period-by-period budget constraints.  
Rather than just two, though, the consumer here faces an infinite number of budget 
constraints, one for each period.  The infinite-horizon idea, which is meant as a stand-in 
for a “many, many, many time period” framework, is sketched in Figure 43.  The general 
idea behind the flow budget constraints is just as in our basic two-period setup.  
 
In addition to extending individuals’ time horizon to something more realistic, we also 
take a more concrete stand on what the assets are that consumers buy and sell.  Rather 
than just an ambigious, catch-all “A” asset as in our two-period model, let’s suppose here 
that the assets that consumers buy and sell are “shares in the stock market” – as in, the 
Dow or S&P 500.   
 
Arguably, the most salient characterisitics of shares of stock (be it Microsoft stock, 
General Motors stock, or a share of the broad Dow or S&P 500 index) are: 
 

1. The stock price, which is the price of one share 
2. The potential dividend that ownership of one share entitles one to receive.   

 
We will model these particular features of stock.  When we later build richer and richer 
frameworks that include other classes of assets, we will begin by asserting the defining 
characteristic(s) of the particular category of assets. 
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Figure 43.  Timing of events in infinite-horizon framework. 
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Our infinite-period model’s period-t flow budget constraint is thus 
 
 1 1t t t t t t t t tPc S a S a D a Y     ,  

 
in which tc  is consumption in period t, tP  is the price level in period t, ta  is the 

consumer’s holdings of real assets – shares of stock – at the end of period t, tS  is the 

nominal price in period t of one share, tD  is a nominal dividend paid by each share, and 

tY  is nominal income of the consumer in period t, which we will assume the consumer 

has no control over.  Note the terms involving assets.  In period t, the consumer begins 
with asset holdings 1ta  .  In period t, each unit of these assets has some value tS , and 

each unit of these assets carried into t pay a dividend tD .  Each unit of asset (share of 

stock) the consumer wishes to carry into period t+1, denoted by ta  also has a unit price 

of tS .  In more formal-sounding language, St is an asset price – it is the price of each 

share of stock. 
 
An analogous flow budget constraint holds in each period , 1, 2,...t t t    In principle we 
could combine all these flow budget constraints into a single lifetime budget constraint, 
as we did in the two-period model.  However, it seems more natural in the infinite-period 
model to work with the flow budget constraint, which acknowledges that the decision-
making happens sequentially (ie, period-by-period), rather than once-and-for-all like we 
implicitly assumed in the two-period model; recall our discussion of the sequential 
(Lagrangian) approach to the two-period model. 
 
 

Optimal Choice 
 
In order to consider optimal choices, then, we must formulate a Lagrangian.  Specifically, 
the problem of the representative consumer in period t is to choose consumption tc  and 

asset holdings ta  to maximize lifetime utility subject to the infinite sequence of flow 

budget constraints starting with period t, taking as given the nominal price P of 
consumption for period t and beyond, the nominal price S of assets for period t and 
beyond, the per-unit nominal dividend D for period t and beyond, and nominal income Y 
for period t and beyond.  The sequential Lagrangian is thus 
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in which t  is the multiplier on the period-t budget constraint, and the ellipsis 

indicate that technically the Lagrangian has an infinite number of terms corresponding to 
the infinite number of future flow budget constraints.  As we will see, in the current 
problem it is sufficient to write out just the t and t+1 flow budget constraints.   
 
Also note carefully that the t+1 budget constraint in the Lagrangian is discounted by β.  
This is because everything about period t+1 is discounted when viewing from the 
perspective of time t, including income and expenditures.  As written above, the period 
t+2 budget constraint in the Lagrangian is discounted by β2,  just as utility in period t+2 is 
discounted by β2.   Recalling our study of the two-period model, each distinct flow 
budget constraint receives its own distinct Lagrange multiplier. 
 
The objects of choice in period t are tc  and ta .  In line with how a sequential Lagrangian 

analysis proceeds, the first-order conditions of the Lagrangian with respect to these 
objects are 
 

'( ) 0t t tu c P   

and 
  1 1 1 0t t t t tS S D        . 

 
Similarly, the first-order conditions of the Lagrangian with respect to ct+1 and at+1 (note 
carefully the time subscripts!) are 
 
 1 1 1'( ) 0t t tu c P       

 and 
 
 2

1 1 2 2 2 ) 0(t t t t tS S D         .  

 
These two pairs of first-order conditions (especially after cancelling the β terms in the 
second pair) make clear that the first-order conditions with respect to ct and with 
respect to ct+1 are identical, except for time period.  The same is true for the first-
order conditions with respect to at and with respect to at+1.  Logic then tells us that 
this pattern will repeat for every period into the future, period t+2, period t+3, … period 



Spring 2014 | © Sanjay K. Chugh 139 

 
 
 

t+77, period t+78, ... and so on.  This is an incredibly powerful result, and it relies on 
the nature of the sequential analysis, so you are urged to understand this point clearly. 
 
Moving on, the (infinite sequence of!) first-order conditions can be combined.  When 
combined, they shed much light on financial-market events and macroeconomic 
fluctuations, both independently of each other and jointly. 
 

From the first-order condition on consumption in period t, we have 
'( )t

t
t

u c

P
  .  Also, 

from the first-order condition on consumption in period t+1 (constructed above, and 

which you should verify), we have the analogous condition 1
1

1

'( )t
t

t

u c

P
 




 .  Inserting 

these expressions for both t  and 1t    into the first-order condition on shares of stock, 

we have 
 

1 1 1

1

'( ) '( )( )t t t t t

t t

u c S u c S D

P P
   




 . 

 
Based on this, there are two broad and informative ways of interpreting this expression, 
one geared towards macroeconomic analysis, the other geared more towards financial 
market analysis. 
 
 
Macroeconomic Perspective 
 
First, from a macroeconomic perspective, we can rearrange it to highlight the 
intertemporal marginal rate of substitution: 
 

 1 1

1 1

'( )

'( )
t t t t

t t t

u c S D P

u c S P
 

 


  .  

 
This is the consumption-savings optimality condition for the particular framework 
considered here.  The left-hand-side is the intertemporal marginal rate of substitution – 
after all, it is simply a ratio of marginal utilities – between consumption in period t and 
t+1.  This is simply the analog of our condition 1 2/u u  in the two-period economy.   
 
Turning to the right-hand-side of the expression above, the term 1/t tP P  is the inverse of 

the gross inflation rate between period t and t+1, that is, 11 /(1 )t  .  The term 

1 1t t

t

S D

S
 

 is the holding period return of the asset ta  -- it measures the gain (or 

loss…) of holding the asset from period t to t+1.  This gain is higher the higher is the 
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period t+1 price and/or dividend, 1 1t tS D  , and is lower the higher is the current (period 

t) price tS .   

 
Also note that the discount factor β appears in the denominator of the left-hand-side of 
the consumption-savings optimality condition above.  This is because, from the 
perspective of period t, the marginal utility of period-t+1 consumption is discounted due 
to impatience. 
 
Analogously, the right-hand-side of the consumption-savings optimality condition above 
is the analog of the term (1 )r  from our two-period model.  The reason (1 )r  does not 
appear explicitly is simply because of the assumption about the available assets we have 
made here.  Later, when we study monetary models, we will assume there are assets in 
the environment that pay a nominal interest rate, as in our simple two-period model, 
which will allow us to regenerate that term.  To aid us in thinking about some other 
issues, below, though, sometimes it will be useful to represent the consumption-savings 
optimality condition above as 
 

 
1

'( )
1

'( )
t

t
t

u c
r

u c 

  ,  

 
where the term 1 + rt hides all of the details we see in the seemingly more complicated 
consumption-savings optimality condition; “hiding” (but being aware of) these details 
can sometimes be useful. 
 
 

Asset Pricing Perspective 
 
The consumption-savings optimality condition highlights optimal choices from a 
macroeconomic perspective, putting things into “MRS equals price ratio” form.  
Alternatively, and especially given our specific interpretation of a here as shares of stock, 
we can view things from a more finance-oriented perspective, by focusing on the asset 
price St.  More precisely, we can think about what sorts of factors are relevant for 
determining what the price of a share of stock is in any time period. 
 
Return to the first-order condition on assets, which we reproduce here for convenience, 
 
 1 1 1( ) 0t t t t tS S D        .  

   
From this expression, we can solve for the period-t stock price, 
 

 1
1 1( )t

t t t
t

S S D




   .  
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In finance theory, one would identify two distinct components on the right-hand-side of 

this asset-pricing expression:  the term 1t

t




  is the pricing kernel, and the term 

1 1( )t tS D   is the future return.60  Thus, what the asset-price expression states is that 

the period-t price of a share of stock depends on the future return and a pricing kernel.  
The future return has two components, arising from any future dividends that buying a 
share of stock in period t entitles one to and any change in the share price itself between 
period t and period t+1.   
 
The pricing kernel seems a bit more esoteric, being a function of the period-t and period-
t+1 Lagrange multipliers.  But here is where the link between finance and 
macroeconomics emerges.  We know from our macroeconomic analysis that 

'( ) /t t tu c P   and 1 1 1'( ) /t t tu c P    .  Inserting these expressions into the asset-pricing 

expression allows us to express the stock price tS  as 

 

 1
1 1

1

'( )
( )

'( )
t t

t t t
t t

u c P
S S D

u c P
 

 


  .  

 

Furthermore, we know that 
1 1

1

1
t

t t

P

P  




, where 1t   is the rate of inflation between 

period t and period t+1.  Rewriting one more time, we have that the stock price St is 
 
 

 1 1 1

1

'( )

'( ) 1
t t t

t
t t

u c S D
S

u c




  



 
   

.  

 
 
Referring to this stock-pricing expression allows us to begin to more fully appreciate the 
linkages between macroeconomic events and asset (stock) prices.  The stock-price 
equation shows that stock prices in period t depend on what the future inflation rate will 
be and how consumption will change over time.  For example, all else equal, the higher is 

1'( ) / '( )t tu c u c , the higher will be tS .  And, all else equal, the higher is 1t  , the lower 

will be St.  We will explore such issues in more depth, but the broad point to appreciate 
here is that things such as monetary policy (which impinges in what inflation rate occurs 
in the economy) and how aggregate consumption evolves over time (recall that 
consumption makes up about 70% of total GDP) affect stock prices.    
 
 

                                                 
60 We will study the “pricing kernel” in much more depth when discuss monetary policy later. 
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Steady State (A Long-Run Macro-Finance Linkage) 
 
Our infinite-period model allows us to explore yet another issue, one that will be 
important to understand when we study business cycle issues as well as monetary policy 
issues.  We have an infinite number of periods in our model, and in principle all variables 
– consumption, interest rates, asset prices, etc. – can be moving around over time.  
Indeed, in a dynamic economy, they inevitably do all move around over time, and 
understanding how and why certain variables evolve over time as they do is a broadly-
defined goal of macroeconomics.  But suppose for a moment that eventually the real 
variables in our infinite-period model “settle down” to some constant values. 
 
Let’s formally define a steady state of an economy as a situation in which all real 
variables stop fluctuating over time.  Note the emphasis on the word real here.  In our 
infinite-period model, a steady state would involve consumption (which is a real 
variable) becoming constant over time, asset holdings a becoming constant over time, 
and the real interest rate becoming constant over time.  Variables such as St, Dt, and Pt, 
because they are nominal variables, need not become constant over time in order to fit 
into our definition of steady-state, although they could become constant as well.  To 
introduce more terminology,  the steady-state of an economy is often referred to as the 
long-run equilibrium of an economy – think of it, if you will, as the “average” or 
“potential” performance of the economy (to invoke loose terms you likely encountered in 
basic macroeconomics). 
 
To provide ourselves some more notation, suppose that the constant level of consumption 
to which the sequence of ct eventually converges is c ; hence, we can think of the steady-
state as a state of affairs in which 1 2 ...t t tc c c c     .  Similarly, suppose that the 

constant level of real interest rate to which the sequence of real interest rates eventually 
converges is r ; hence, we can think of the steady-state as a state of affairs in which 

1 2 ...t t tr r r r     .  And so on for all real variables of our model. 

 
 
Impatience and the Real Interest Rate 
 

Consider the expression above (repeated here for convenience), 
1

'( )
1

'( )
t

t
t

u c
r

u c 

  .  This 

expression is nothing more than the infinite-period model’s consumption-savings 
optimality condition.  Indeed, it is no different from our two-period model’s 
consumption-savings optimality condition, apart from the introduction of the time 
discount factor.  In a steady-state, the consumption-savings optimality condition can be 
expressed as 
 

 
'( )

1
'( )

u c
r

u c
  .  
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Clearly, the '( )u c  terms cancel, leaving us with 
 

 
1

1 r

  .  

 
This expression, which is the long-run consumption-savings optimality condition, 
captures an extremely critical idea embedded in virtually all of modern macroeconomic 
theory and thus is at the root of a wide range of both academic and policy discussions of 
macroeconomics.   
 
What this long-run expression states is that, in the steady state – alternatively, “in the 
long run,” or “on average” – the real interest rate of the economy is fundamentally tied to 
the degree of impatience of consumers in the economy.  The theoretical upper end of   
is β = 1; if β = 1, then the long-run consumption-savings condition immediately tells us 
that the long-run real interest rate equals zero.  That is, if consumers are perfectly patient 
(which is what β = 1 means) there is no net real return from savings.   
 
Suppose instead, for the sake of numerical illustration, that β = 0.95, meaning that 
consumers are somewhat impatient.  Long-run consumption-savings optimality then 
immediately allows us to conclude that the steady-state real interest rate in the economy 
is roughly 0.0526r  .  Suppose instead that, β = 0.9, meaning that consumers are 
somewhat more impatient.  In this case, the steady-state real interest rate in the economy 
is roughly 0.11r  . 
 
To cast these conclusions in very broad perspective, the most primitive, fundamental 
source of “interest rates” in the economy is human impatience.  If human beings were 
always infinitely-patient creatures (β = 1), (real) interest rates would be zero.  Thus, the 
mere presence of impatience at all (β < 1) is the fundamental source of positive interest 
rates in the world.  Not Wall Street; not central banks – the primitive reason for the 
general existence of positive interest rates is human impatience, however crudely we 
have modeled it.  The long-run consumption-savings optimality condition then also 
shows us that the more impatient consumers are (remember, we are always speaking of 
the representative consumer) the higher are real interest rates. 
 
This deep connection between interest rates and people’s inclination towards impatience 
cannot be overemphasized in its central importance to macroeconomic theory.  It is a 
deceptively simple idea – the long-run consumption savings optimality condition 
obviously looks simple enough, but the idea it captures will continue to be at the root of 
the richer models we’ll continue building.  It also is a connection point between short-run 
business-cycle analysis and long-run growth considerations.  As such, it is useful to wrap 
your mind around this idea as well as possible now. 
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