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Chapter -1 
Mathematical Refresher 
 
The concept of a function is a very general and powerful one.  A function is a 
mathematical object that serves as a fundamental tool in many fields of analysis.  We will 
not here give a rigorous or comprehensive treatment of the mathematical notion of a 
function.  The purpose here is to (re)familiarize you with the basic concepts and the most 
important ways in which we will use functions as we develop tools of economic analysis 
in this course. 
 
 

Abstract Functions and Functional Forms 
 
A function transforms an input into an output.  More specifically, a function is a rule 
that specifies how an input is to be transformed into some output.  At its simplest level, 
the level with which we will be concerned, the input and outputs will all be numbers.  In 
general, any function can have multiple inputs and multiple outputs.  Every function that 
we will use will have only one output – that is, a function whose operation results in only 
one numeric value as its output.  However, we will regularly encounter functions that 
have multiple inputs, in addition to functions that have simply a single input. 
 
A function can be written and used in abstract form, as when we simply write and use the 
function ( )f x  without specifying anything further about what the function actually does.  
Often, however, in order to do something useful with a function, we need to specify a 
particular functional form – that is, we often need to specify what a function actually 
does (i.e., what the rule is).  Some examples of common functional forms will help 
illustrate the concept: 
 
 2( )f x x  (0.1) 
 ( ) 2 8f x x   (0.2) 

 ( )f x x  (0.3) 
 ( ) ln( )f x x  (0.4) 
 ( , ) ln( ) 0.8 ln( )f x y x y   (0.5) 
 
In the above simple functions (functional forms), note that each function returns only one 
number as its output (as promised).  Also note that function (0.5) is a function of two 
inputs, while the others are all functions of one input. 
 
Arguments of Functions 
 
To be a bit more formal mathematically, an input(s) to a function is commonly known as 
its argument(s), and the output of a function is commonly known as its result or value.  
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Using the functions defined above, we see that each of the functions (0.1) through (0.4) 
takes one argument named x .  Function (0.5) takes two arguments named x  and y . 
 
When actually performing numerical calculations using functions, the x  in each case of 
the functions (0.1) through (0.4) would be replaced with an actual number because it is 
meaningless to square the letter x, because only numbers can be squared.  The leads to 
the distinction between formal arguments and actual arguments.   
 
Think of a formal argument as a placeholder in an abstract function.  In each function 
(0.1) through (0.4), the formal argument is x .  In function (0.5), the two formal 
arguments are x  and y .  More will be said about replacing formal arguments with actual 
arguments, but first let’s examine the components of a function definition. 
 
 
Dissecting the Components of a Function Definition 
 
Examining the components of a function definition will help illuminate what a function 
actually represents.  Consider the simple function given in (0.1) above: 
 

2( )f x x . 
 

There is much to understand about this function definition.  Proceeding left to right: 
 

- The name of the function is f .  There is nothing particularly special about the 

name given to a function -- f  is a popular choice when trying to be as abstract as 

possible.  Sometimes, the letter used to name a function is chosen so that it 
somehow represents a memorable aspect of the function.  For example, the money 

demand function in maroeconomics is often named DM .  But any name is 
perfectly valid.  In the example under consideration, we could have written 

2( )g x x  or 2( )F x x  or 2( )h x x  or 2( )ExampleFunction x x .  In short, we 

could have given any name to the function, not only f . 

- The parentheses ( ) contain the formal argument(s) of the function.  In this case, 
the formal argument to the function f  is x .  In a function such as (0.5) above, 

the parentheses contain two arguments.  An important point to note, similar to the 
point immediately above, is that the name of the formal argument is unimportant.  

In the example 2( )f x x , the name of the formal argument is x .  But it could 

have just as easily been named y , in which case the function definition would be 
2( )f y y .  It could also have just as easily been named argument , in which case 

the function definition would be 2(arg ) argf ument ument .  There would be 

absolutely no material change to the function definition if this were the case – 
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precisely because the formal argument is simply a placeholder and does not itself 
mean anything. 

- One the right-hand-side of the equals sign is the body of the function.  The body 
uses the formal argument(s) of the function and specifies what calculation should 
be performed.  In our simple example above, the body specifies that the result 
should be the square of the argument.  In function (0.2) above, the body specifies 
that the return value of the function should be two times the argument plus eight.  
Similarly for the other functions above. 

 
 
Replacing Formal Arguments with Actual Arguments 
 
As alluded to above, the usefulness of a function is in its ability to substitute actual 
numeric values for the formal arguments of the functions and thereby generate numeric 
results.  Table 1 computes the results of two simple inputs for two of our example 
functions.  All that has been done is to substitute actual arguments (10 and 20 in these 
particular cases) for the formal arguments x  in functions (0.1) and (0.2).  Specifically, 
what has been done is that the actual arguments have been substituted for the formal 
arguments in the body of the functions.  The body of the function is then numerically 
computed, and the resulting numeric value is the return value of the function. 
 

Functional Form Input Calculation Output/Value 

2( )f x x  10 102 100 

2( )f x x  20 202 400 

( ) 2 8f x x   10 2(10) + 8 28 

( ) 2 8f x x   20 2(20) + 8 48 

Table 1 

 
Note that in the absence of specifying actual arguments, the return value of the function is 
simply the body of the function itself – which includes the formal arguments. 
 
 
Using Abstract Functions in Algebraic Manipulations 
 
A very important concept to understand is that functions can be manipulated algebraically 
just as “ordinary” variables and numbers are manipulated algebraically.  The following 
visual illustrates this concept: 
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7 12x   ( ) 7 12f x    

  subtract 7 from both sides   subtract 7 from both sides 

5x   ( ) 5f x   

 
In the simple expression 7 12x  , in order to solve for x , the value 7 is subtracted from 
both sides of the equality, which yields the solution 5x  .  Completely analogously, if 
the expression ( ) 7 12f x    is to be solved for ( )f x , simply subtract 7 from both sides 
of the equality, which yields the solution ( ) 5f x  .    If a particular functional form for 
f  is not specified, then this is as far as we can take the calculation.  That is, when no 

functional form is given, ( ) 5f x   is a perfectly valid solution! 
 
However, if a functional form is specified, then we can proceed a bit further.  Continuing 
with our example from the preceding paragraph, if the function specified were 

( ) 2 8f x x  , then we can solve for x  as follows: 
 

( ) 5f x   

  replace ( )f x  by the given functional form 

2 8x  

  solve for x  

3/ 2x    

 
Trying for yourself the other functional forms we have encountered would be a good 
exercise at this point. 
 
The main point to understand is that performing algebraic manipulations with (abstract or 
particular) functions is just like performing algebraic manipulations with “ordinary” 
variables and numbers.  There is nothing mysterious here, and you should make yourself 
comfortable with this concept and its mechanics because we will use it repeatedly 
throughout our study. 
 
 
Key Concepts 
 

- A function takes (numeric) inputs and results in (numeric) outputs. 
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- When provided with a specific functional form for a function, computations can 
be carried further then if no functional form is specified. 

- When performing numerical calculations, if actual arguments are provided, the 
actual arguments replace the formal argument in the body of the function 
definition. 

- Abstract functions can be manipulated algebraically just like ordinary variables 
and numbers. 

 

Lagrange Optimization 
 
With the concept of a function in hand, we now provide a brief overview of constrained 
optimization.  A constrained optimization problem is one in which the goal is to find 
numerical values for the arguments of a function in such a way that the numerical value 
of that function is maximized (or minimized) and that satisfy some pre-specified 
relationship(s) between the arguments being chosen. 
 
Many of our economic applications of constrained optimization will involve functions of 
two arguments, so we first illustrate the method of Lagrange optimization, which is the 
standard mathematical tool used to solve constrained optimization problems, using a 
problem with two variables.  Note, however, that the Lagrange method readily applies to 
functions of one, three, four, or any number of variables.   
 
Consider the following mathematical constrained optimization problem.  There is a 
function ( , )f x y , and the goal is to find the numerical values of x  and y  that, when 
used simultaneously in f , maximize the numerical value of f  and satisfy the 
relationship ( , ) 0g x y  .  That is, g  is some other function that the two variables x  and 
y  satisfy – but the goal is not to maximize (or minimize) g , the goal is to maximize f . 
 
The Lagrange method in this problem proceeds as follows.  Define an auxiliary variable 
  (the Greek letter “lambda”).  The variable   is the Lagrange multiplier.  With the 
Lagrange multiplier, construct the following function, called the Lagrange function: 
 
 ( , , ) ( , ) ( , )L x y f x y g x y   . 
 
That is, the Lagrange function L  is a function of three variables:  , ,x y  and the newly-

constructed variable  .  The Lagrange function is made up of two components summed 
together:  the objective function f  which is to be maximized and   times the 
constraint function g . 
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The next step in the procedure is to compute the partial derivatives of L  with respect to 
each of its three arguments and set each resulting expression to zero.  Using general 
notation, these three expressions are: 
 

 

0

0

( , ) 0

L f g

x x x
L f g

y y y

L
g x y







  
  

  
  

  
  


 


 

 
These three equations are the first-order conditions of the optimization problem under 
consideration.  These three expressions are three equations in the three unknowns, , ,x y  

and  , which typically can be solved for unique values of the three unknowns once we 
specify particular functional forms for the functions ( , )f x y  and ( , )g x y  (recall our 
discussion of functions above).   Note that the third expression is in fact just the 
constraint on the optimization problem.  This is a general principle:  the first-order 
condition of the Lagrangian with respect to the Lagrange multiplier always delivers back 
the constraint function. 
 
Remember the goal here is to ultimately to solve for x  and y  (and the Lagrange 

multiplier  ).  We can solve each of the first two equations above for  : 
 

 

/

/

/

/

f x

g x

f y

g y





 
 

 
 

 
 

 

 
Setting these two equal to each other, we find that  

 
/ /

/ /

f x f y

g x g y

   


   
, 

Or, completely equivalently, 

 
/ /

/ /

f y g y

f x g x

   


   
. 

This expression literally states that at the optimal solution, the ratio of partial 
derivatives of the objective function f  is equal to the ratio of partial derivatives of the 
constraint function g .  At this point, this is a completely abstract mathematical idea, but 
the basic result – that at the optimal solution, the ratio of partials of the objective function 
is equal to the ratio of partials of the constraint function – will be critical for many of the 
economic ideas we study, so it is well worth it to understand this idea as well as possible 
now.   
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The “optimality condition” (a term we will encounter in more precise instances soon) 
captured by the previous expression is one that must be satisfied at the optimal solution.  
Away from the optimal solution, however, this expression need not be satisfied (and in 
general will not be).  Note well the content of these last two statements. 
 
The multiplier   has been eliminated from this last expression.  This last expression 
coupled with the first-order condition of the Lagrangian with respect to  , now comprise 
two equations in the two unknowns x  and y .  Given functional forms for f  and g , we 
would be able to compute the required partial derivatives and thus solve for the optimal 
values of x  and y  (i.e., that combination of x  and y  that yields the maximum value of 
f  and satisfies the constraint ( , ) 0g x y  ). 

 
To take a concrete example to see how the Lagrange technique yields a solution, suppose 

( , ) ln lnf x y x y   and ( , ) 5 0g x y x y    .  The necessary partial derivatives are:  
/ 1 / ,f x x    / 1/ ,f y y    / 1g x   , and / 1g y   .  With these partials, the 

optimality condition becomes 
/ / 1/ 1

/ / 1/ 1

f y g y y

f x g x x

   
  

   
, 

which easily simplifies to x y .  Thus, we now know that for this example, at the 
optimal solution (but not away from the optimal solution), x y .  Use this relationship 
in the constraint function (which, recall, is simply the first-order condition of the 
Lagrangian with respect to the multiplier), giving us 5 0x x   .  Clearly, the solution 
is 2.5x  , which then also implies that 2.5y x  .  The optimization problem is now 
solved:  the values of x  and y  that sum to 5 and maximize the given function ln lnx y  
are 2.5, 2.5x y  . 
 
We have illustrated the Lagrange method using one constraint function.  The method 
readily generalizes to handle two, three, four, or any arbitrary number of constraints on a 
given optimization problem.  We will encounter economic applications in which there are 
multiple constraint functions on an optimization problem.  To start simply, consider an 
example in which there are two constraint functions, ( , ) 0g x y   as well as ( , ) 0h x y  , 
that must be satisfied in the optimization of the function ( , )f x y .  In order to handle two 

constraints, we need two Lagrange multipliers – let’s name them 1  and 2 .  The 
Lagrange function in this case would be  

 

1 2 1 2( , , , ) ( , ) ( , ) ( , )L x y f x y g x y h x y      . 
 

The Lagrange function L  here is a function of the four variables 1, ,x y  , and 2 , and 
we must compute the partial derivatives of L  with respect to each of its four arguments   
and set each resulting expression to zero.  Again using general notation, the four first-
order conditions are 
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1 2

1 2

1

2

0

0

( , ) 0

( , ) 0

L f g h

x x x x
L f g h

y y y y

L
g x y

L
h x y

 

 





   
   

   
   

   
   


 



 


 

 
which are four equations in four unknowns; once again, in general, the system of 
equations can be solved to yield a unique solution for each of the variables, although of 
course the algebra here is a bit more tedious because there are more equations to work 
through. 
 

Implicit Function Theorem 

Although we will use this concept sparingly, the implicit function theorem (IFT) is a 
clever way of obtaining a derivative of one argument in a function with respect to another 
argument of that function in a way that maintains the output value.   
 
As a simple warm-up, suppose that ( , )f x y x y  .  If x = 5 and y = 3, then obviously 

the output value is ( , ) 8f x y   .  If we wanted to maintain the output value ( , ) 8f x y   

but want to change the mix between x and y, there are clearly an infinite number of 
combinations.  One combination is x = 3 and y = 5.  Another combination is x = 4 and y = 
4.  Yet another combination is x = 1.235 and y = 6.765.  And so on.  Thus, for every one 
unit change in the input argument x, there must be a one unit change in the argument y in 
the equal and opposite direction in order to maintain ( , ) 8f x y x y   . 

 
More formally, given a function ( , )f x y , the derivative of y  (which, note, is one of the 

arguments of the f function) with respect to x  (which, note, is also one of the arguments 
of the f function) is given by 

 
/

/

dy f x

dx f y

 
 

 
.  

 
To use the IFT in a more interesting example, suppose 2( , )f x y xy .  To compute the 
partial derivative of f  with respect to x , we treat y  as a constant, in which case we 

obtain 2/f x y   , and to compute the partial derivative of f  with respect to y , we treat 

x  as a constant, in which case we obtain / 2f y xy   .  The IFT then tells us that  
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2

2

    
2

dy y

dx xy

y

x

 

 

  

 

Thus, for every one unit change in the argument x, there must be change in the argument 

y of 
2

y

x
   units in order to maintain a particular value of ( , )f x y . 

 

Elasticity 
 
Very often important in economic analysis – so now we are moving away from abstract 
mathematics basics – is the sensitivity of one variable to a change in another variable.  
That is, when one variable changes, how much impact does it have on another variable.  
Note that elasticity is not the same concept as the implicit function theorem. 
 
A classic example is the sensitivity of demand for a particular good when a change has 
occurred in its market price.  Using this example of the sensitivity of quantity demanded, 
its elasticity is qualitatively defined as 
 

,

% change in quantity demanded of a good

% change in market price of that good
dq p

  . 

 
The notation ε (the Greek letter “epsilon”) is often used to describe elasticity.  In this 
example, it is the elasticity of quantity demanded with respect to its price, hence the two 
subscripts qd and p.  Implicit in being able to compute an elasticity is that we already 
know the functional relationship between the two variables.  In our example, consider it 
to be the market demand function qd(p).1 
 
There are two major elasticity concepts in economics:  the arc elasticity and the point 
elasticity.  As you may recall from basic microeconomics, an arc elasticity averages 
between two potentially widely-varying points on the known functional relationship.  If 
the gap between these two points turns out to be very small, the arc elasticity is 
effectively the same as the point elasticity.  For macroeconomic purposes, because 
changes that occur are typically “small,” the important one is the point elasticity.  Thus, 
the point elasticity should be thought of as the percentage by which one variable 
changes when a different variable changes by one percent, starting from a particular 
pair of those variables.   
 

                                                 
1 Based on what we described above, the name of the function is qd, the argument of the function is p,  and 
the body is left unspecified. 
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The point elasticity is mathematically defined as  
 

,

( ) (

l )(

ln )

n
d

d known d known known

known known d knownq p

q q p p

pp

p

qp
 


 




 . 

 
This expression understandably seems very complicated, but it is for the sake of clarity.  
Suppose we know, based on demand function, the starting pair ))( , (known d knownp q p  , 
which is one single point on the demand function.  Obtaining the point elasticity then 
requires computing the derivative of quantity demand with respect to price, evaluated at 

the point ))( , (known d knownp q p .  Multiplying this by 
( )

known

d known

p

q p
  yields the point elasticity 

of quantity demanded around the starting pair. 
 
An example illustrates this.  Suppose ( )dq p p  (ψ is the lowercase Greek letter “psi”).  

This implies 1
dq

p
p

 



 , and hence the point elasticity, after several steps of algebra, is 

 

 

,

1

ln

ln

       

       

       

       .

d

d d

dq p

d

d

q q p

p p q

p p

q

p

q

p

p





















 


 














  

 
Notice that in the fourth step, the known functional relationship ( )dq p p  was 
substituted in, which is perfectly valid to do. 
 
 
 


