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1 Introduction

This paper uses microeconomic data on heterogeneity in training costs (or, more generally, idiosyn-

cratic productivity for new matches) to show that a labor selection model displays large fluctuations

in aggregate labor markets. Based on our micro-calibration, the main result is that, conditional on

productivity shocks, roughly 40 percent of empirically-relevant fluctuations in the U.S. job-finding

rate can be described by an efficient labor selection mechanism. These results are several times

larger than in an efficient search and matching model, and the efficient selection model’s results

hold in both partial equilibrium fluctuations and in general equilibrium fluctuations.

Selection as an important margin of adjustment in firms’ hiring decisions is a long-standing

realistic idea, but has not been much emphasized in macro-labor analysis. An early important

empirical firm-level contribution was Barron, Bishop, and Dunkelberg (1985, p. 50), who adopt and

find strong evidence for the view that “...most employment is the outcome of an employer selecting

from a pool of job applicants...” due to cross-sectional heterogeneity in the pool of applicants. Davis,

Faberman, and Haltiwanger (2013) add further evidence to the view that, in their terminology,

“hiring standards” play an important role among the many margins of labor adjustment. Selection

issues seemingly would be an important component of hiring standards.

Our model’s analysis revolves around one critical microeconomic parameter, which is the cross-

sectional dispersion of new hires’ idiosyncratic training costs (or, more generally, idiosyncratic

productivity for new workers). Taking this cross-sectional dispersion as an exogenous primitive,

the model economy delivers an endogenous selection threshold for new employees. The primary

data source used to discipline this cross-sectional dispersion is the 1982 U.S. Employer Opportunity

Pilot Project (EOPP), which many researchers continue to use to this day. Our focus, unlike many

others who use the rich EOPP data, is on the cross-section of new hires’ training costs; to that

effect, we use the cross-sectional moments calculated by Barron, Black, and Loewenstein (1989,

Table 1).

The social planner framework we construct intentionally says nothing about decentralization

via wages. However, we show in Appendix D that efficiency can be decentralized. For the sake of

robustness, we also use a second, independent, data source to discipline the cross-section, which

are micro-level wage data for newly-hired employees constructed by Haefke, Sonntag, and van Rens

(2013). We show in two different model based ways that the wage dispersion for newly hired

employees is a very useful information to discipline our calibration exercise. Regardless of which

micro data source is used, macro-level volatility in labor markets is an order of magnitude larger

than in an efficient search and matching framework.

We show analytically that the outside option plays a different role in efficient selection models

compared to efficient search and matching models. In the selection model, the outside option has
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zero first-order effect on the steady-state elasticity of the job-finding rate with respect to productiv-

ity. In contrast, the outside option appears directly in the search and matching model’s steady-state

elasticity of the job-finding rate with respect to productivity. In the selection framework, the driv-

ing force for amplification is the shape of the idiosyncratic distribution at the endogenous selection

threshold.

The selection model’s results depend on a distributional assumption about heterogeneous train-

ing characteristics (which could be interpreted as “match quality” characteristics), and, in turn,

how large the mass of individuals is that moves across the endogenously time-varying selection

threshold conditional on aggregate productivity shocks. We thus consider several different distri-

butions. We also allow for sequential search (à la McCall (1970) and Mortensen (1970)) to permit

an arbitrary number of “job arrivals” or “interviews” (and hence an arbitrary number of “match-

quality” realizations) during a given time period. The quantitative results of course differ slightly

as we vary distributions and vary the number of per-period contacts (aka, the job arrival rate)

via sequential search within an empirically plausible range, but the main result remains the same:

an efficient labor selection model provides powerful amplification effects on job-finding rates and

unemployment rates in response to productivity shocks.

Focusing the model on selection effects and efficiency allows us to highlight that no other frictions

are needed to deliver sharp fluctuations in the labor market, which makes the intuition easy to

understand.1,2 This focus on selection does not deny that other frictions, be they on quantities or

on prices, do not or cannot play an important role in macro-labor dynamics. Rather, our focus on

efficient selection is meant as a first step.

Extensively studied in the literature is the role of search and matching frictions, along with

frameworks such as the involuntary unemployment framework of Christiano, Trabandt, and Walentin

(2010), the rigid-wage class of models as in Gali (2011) and Gali, Smets, and Wouters (2012), as

well as earlier versions of the labor selection model incorporating New Keynesian pricing frictions

and wage setting frictions, such as Lechthaler, Merkl, and Snower (2010). These various models,

based on different primitives and distortions, do not disentangle the amplification effects that are

due to efficient surplus splitting versus inefficient surplus splitting. The point of our work is to

analytically and quantitatively analyze efficient allocations in a tractable dynamic selection model,

in a way that can be traced all the way back to the early indivisible (and efficient) labor models

of Hansen (1985) and Rogerson (1988). Our model and its workings has interpretations in terms

1Carlsson, Eriksson, and Gottfries (2013) find that the market tightness of local labor markets in Sweden does
not affect job creation. This suggests that other margins such as labor selection may be at work.

2While this focus on one margin of the labor market (namely, selection) may seem extreme at first sight, it is
similar to many search and matching papers that assume that all workers that make a contact with a firm get
matched. This is the case if the matching function is interpreted as a contact function (i.e., contact is endogenous,
while selection is exogenous). For a further discussion of this issue see Brown, Merkl, and Snower (2015).
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of the indivisible labor models of Hansen (1985) and Rogerson (1988), and it has connections with

their generalization in terms of heterogeneity developed in Mulligan (2001).

The rest of the paper is organized as follows. Section 2 describes the details of the selection

model, derives analytical results for the efficient partial equilibrium version and provides some

intuition. Section 3 shows quantitative results in partial equilibrium and checks for the robustness

of these results. Section 4 enlarges the model to general equilibrium by including endogenous labor-

force participation and an aggregate goods resource constraint, in which the labor-market results

carry through. Section 5 concludes.

2 Labor Markets I: Analytics

This section defines the basic labor market setup and notation that will be used throughout the

paper. To focus on the main results of the model, both this Section 2 and Section 3 abstract from

consumption markets and hence could be thought of “partial equilibrium.”

2.1 Structure of Labor Market

There are two central features of the model. First, each newly selected worker imposes training

costs on his employer (or, more generally, he draws a match-specific idiosyncratic shock).3 The

training costs consist of a fixed component, γh > 0, and an idiosyncratic component, εit, for newly-

hired individual i. The idiosyncratic component is revealed only when a potential worker makes

contact with a firm, as shown in Figure 1. The idiosyncratic component of training is the “match

quality” cost in our analysis.4 There is a continuum of production units, each of which is constant-

returns-to-scale and homogenous in all other respects.

This is the second central feature of the model: depending on his training costs realized at

a specific production unit, the potential new worker may or may not be hired. If not hired,

the individual makes finitely many more “meetings with” or “contacts with” (we use the terms

“meeting,” “contact,” “job arrival,” and“job offer” synonymously) another firm, at which he may

have had a lower contact-specific training cost, during the same period. This latter aspect of

the model is the well-known sequential search model. Until we incorporate sequential search in

Section 3 below, suppose that each individual available to be selected for work in a given time

period makes contact with one arbitrary production unit with probability one. The one-contact-

3We will interchangeably refer to “firms” and “production units” in what follows because of the linearity of the
production technology and the fact that we study only efficient allocations, so the manner in which employment
surpluses are split via wages in a decentralized economy does not affect the results.

4There is no traditional matching function in the model as in the Pissarides (1985) framework. One could suppose
that a simple matching, or “contact,” function exists in which the measure of matches equals the number of searching
individuals.
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per-period framework conveys virtually all of the economic intuition of the paper.

From a planning perspective, it is thus efficient to hire only those individuals with sufficiently

attractive characteristics. Sufficiency is characterized by an endogenous state-contingent selection

threshold, ε̃t. Because individual i’s idiosyncratic characteristics are defined as a cost, he is hired

only if εit ≤ ε̃t. Training costs are i.i.d. across worker-firm pairs within any given period and across

time periods, with probability density function f(εt). Selection occurs with endogenous probability

η(ε̃t), which is the cumulative distribution function of ε; all searching individuals being considered

for a job draw from the same distribution.

Both the fixed component of training costs γh and the idiosyncratic component of training

costs εit are measured in units of output, and they are incurred in only the first period of a

new employment relationship.5 In contrast, each incumbent worker has zero training costs and

produces stochastic output zt in period t. Newly hired worker i produces output net of training

costs zt − εit − γh.

An individual who is not selected for work instead receives an outside option b. Absent general

equilibrium, this outside option can interchangeably be thought of as the utility value of leisure,

government-provided unemployment benefits, or home-produced goods. There is no intensive mar-

gin of labor. Each unit of labor is thus to be be thought of as indivisible in the sense of Hansen

(1985) and Rogerson (1988), as well as in the baseline search and matching model.

Define H(ε̃t) ≡
∫
ε≤ε̃t εf(ε)dε (with f(ε) as the probability density at ε), and define r as the

net real interest rate across consecutive time periods. From an efficiency perspective, the dynamic

surplus maximization problem for the representative production unit is thus

maxE0

∞∑
t=0

(
1

1 + r

)t [
ztnt + st(1− η(ε̃t))b− stη(ε̃t)

(
γh +

H(ε̃t)

η(ε̃t)

)]
(1)

subject to the endogenous law of motion for employment

nt = (1− ρ)nt−1 + η(ε̃t)st (2)

and an expression defining the measure of searching individuals who are available for work during

the period-t selection process,

st = lfp− (1− ρ)nt−1, (3)

in which labor force participation (lfp) is an exogenous constant in this section, but is endogenous

in the full general equilibrium model of Section 4.

In the surplus function (1), (γh + H(ε̃t)
η(ε̃t)

) measures the average training cost across all new

5Individuals who have been employed for more than one period are identical in their characteristics.
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Period t-1 Period t+1Period t

Aggregate 
state 

realized

nt-1 nt
Production (using nt 
employees) occurs

Employment 
separation 

occurs (ρnt-1 
employees 
separate)

Selection of 
applicants, who 
begin working 
immediately

nt = (1-ρ)nt-1 + ηtst

yields

st individuals 
search for 

jobs

(1-ρ)nt-1 individuals counted 
as employed, st individuals 

counted as searching

Each unselected 
individual receives 
b units of home-
produced goods

Figure 1: Timing of events in labor market.

employees, with H(ε̃t)/η(ε̃t) measuring the average idiosyncratic component of training costs. As

the law of motion (2) shows, there are “instantaneous transitions” into employment, in which

new employees begin producing right away, rather than with a one-period delay. The number of

individuals that receive the outside option is thus the unselected searchers, st(1 − η(ε̃t)).
6 These

unselected searchers are counted as unemployed.

The law of motion (2) also shows that each individual has a fixed probability ρ of separation.

While heterogeneity in principle may also be empirically important for separations, the assumption

of fixed ρ allows the model to clearly separate heterogeneity as a basis for hiring versus for firing.7

Finally, (1) and (2) formally show that constant-returns-to-scale production of goods means it is

without loss of generality to examine the problem of a single production unit that hires one worker

or that hires many workers. We adopt the latter setup because it easily fits into the full model in

Section 4. Figure 1 summarizes the model timing.

6This has also become a standard in models featuring labor matching frictions, so we adopt it for comparability.
The main results do not depend on the particular timing of labor transitions, however.

7The seminal theoretical reference in the matching literature for endogenous separation is Mortensen and Pissarides
(1994).
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2.2 Efficient Allocations

The state-contingent first-order conditions of the surplus maximization problem with respect to nt

and ε̃t yield the efficient selection condition

γh + ε̃t = zt − b+

(
1− ρ
1 + r

)
Et
{
H(ε̃t+1)− ε̃t+1η(ε̃t+1) + γh + ε̃t+1

}
, (4)

which is the central expression of the paper.8 Efficient allocations are thus defined as state-

contingent functions {ε̃t, nt}∞t=0 that satisfy the sequence of selection conditions (4) and aggregate

laws of motion of labor (2).

The intertemporal condition (4) characterizes the dynamics of ε̃t. It corresponds to the matching

model’s vacancy-creation (or job-creation) condition; it also corresponds to the real business cycle

(RBC) model’s Euler equation for efficient capital accumulation. Even though our model does

not have “physical capital” in the strict RBC sense, the creation of an employment match is an

investment activity that yields a long-lasting asset. The selection condition is the intuitive heart

of the model, so it is worth examining further.

To build intuition, first consider the stark case of ρ = 1, which makes employment a one-period,

though not a frictionless, phenomenon. This yields a simple version of the selection condition,

γh+ ε̃t = zt−b, which implies that the elasticity of the selection threshold with respect to aggregate

productivity along the business cycle is

∂ ln ε̃t
∂ ln zt

=
zt
ε̃t
. (5)

Given that γh is the average fixed training cost for every new hire, the distribution of εt, without

loss of generality, can be centered around zero.

With the more realistic ρ < 1, an explicit elasticity can be derived only in the steady state.

From the deterministic steady state version of (4), the elasticity of (steady-state) ε̃ with respect to

(steady-state) z is
∂ ln ε̃

∂ ln z
=

(
z

ε̃

)(
1 + r

r + ρ+ (1− ρ)η(ε̃)

)
. (6)

Two observations based on (6) are important. First, the second term on the right-hand side is

larger than unity given that ρ ∈ [0, 1] and η(ε̃) ∈ [0, 1]. This elasticity is thus even larger than the

one-period elasticity in (5). Second, the sensitivity of the threshold ε̃ to aggregate productivity does

not directly depend on b and hence does not depend directly on the social surplus z− b.9 Similarly,

8Its derivation appears in Appendix A.
9At higher-order approximations, the sensitivity of ε̃ to productivity shocks in general will depend on b because ε̃

is fundamentally a function of b (albeit a nonlinear one) through the selection condition. But these effects are indirect
(i.e., of second- and higher order), unlike the effects of small surpluses in matching models, which have first-order
effects. The latter effect can be seen in, for example, Hagedorn and Manovskii (2008, p. 1695), which highlights

6



the sensitivity does not depend on the average level of training costs γh.10 Local fluctuations of the

threshold training cost around the steady state are thus insensitive to the size of the social surplus

and can be large, which is in sharp contrast to an efficient version of a labor search and matching

model, as described in Section 2.4.

It is not the sensitivity of fluctuations of just the selection threshold, but, more importantly,

of the sensitivity of the finding rate around the threshold η(ε̃t) that are relevant for the analysis.

Using the implicit function theorem, the steady-state elasticity of the finding rate with respect to

aggregate productivity is

∂ ln η(ε̃)

∂ ln z
=

∂ ln η(ε̃)

∂ ln ε̃

∂ ln ε̃

∂ ln z

=
η′(ε̃)

η(ε̃)
· z ·

(
1 + r

r + ρ+ (1− ρ)η(ε̃)

)
. (7)

While most of the parameters and variables in this elasticity expression have commonly-used

values in the literature (or at least a range of plausible values) for the U.S., (e.g. r, η(ε̃), ρ),

the first derivative of the selection rate (η′(ε̃)) is less straightforward. Intuitively, the shape of the

distribution of training costs at the cutoff point matters substantially. With a large mass of workers

around the cutoff point ε̃, aggregate productivity shocks can be strongly amplified

2.3 Analytical Example

To illustrate the selection model’s power, let’s abstract for a moment from the dependence of

η′(ε̃) on ε̃ by assuming a uniform distribution. A uniform distribution of course displays constant

η′(ε̃) (= f(ε̃)) ∀ ε. That is, the probability density does not vary across the distribution. The U
assumption in principle weakens our results precisely because η′(ε̃) does not depend on ε̃.11

To convey the intuition as clearly as possible, take the U [−x, x] distribution, as sketched in

Figure 2. Setting x = 1.2 (reasons for this calibration are described in Section 3.1), the probability

density is f(ε) = 1
2.4 and the selection rate is η(ε̃) = ε̃+1.2

2.4 . In the elasticity expression (7), insert

U.S. economy quarterly parameter values of ρ = 0.1, r = 0.01, and a quarterly finding rate of

η(ε̃) = 0.58 (and, without loss of generality, normalize z = 1). With these numerical values, the

that the social surplus z − b does strongly affect the matching model’s dynamics, even though it does not affect the
selection model’s dynamics.

10However, there is an indirect effect that larger γh and larger b reduce the steady state value of η(ε̃), which
may lead to larger log-deviations for a given absolute deviation. Because the long-run selection rate in the model
is calibrated to the empirically relevant long-run finding rate in U.S. data in all partial equilibrium and general
equilibrium simulations below, this indirect effect is excluded.

11The argument in this statement supposes that, for a non-uniform distribution, the endogenous selection point ε̃
is in a region of the distribution in which the probability density is declining — that is, in a region around ε̃ in which
η′′(ε) < 0, which turns out to be true in our quantitative experiments below for non-uniform distributions.
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ɛcutoff

f(ɛ)

-x x

ɛ

σɛ* 

σɛ 

Figure 2: Analytical example. Illustration of the U [−x, x] density from which the match-specific training

cost of potential new hires are drawn. Higher values of ε mean higher training costs. The endogenously-

determined selection threshold is denoted by ε̃, the endogenous finding rate (the cumulative distribution at

the cutoff ε̃) is η(ε̃) (the grey shaded area), the standard deviation for those hired is denoted by σ∗
ε , which

is smaller than the population standard deviation σε.

elasticity of the finding rate with respect to aggregate productivity around the steady state is

∂ ln η(ε̃)

∂ ln z
= 1.15, (8)

which is an order of magnitude larger than the comparable elasticity in the efficient version of the

labor matching model.

Vis-à-vis the data, this elasticity of 1.15 (in the simplest analytical case of the efficient labor

selection framework) turns out to be roughly 40 percent of that in U.S. data. Using data constructed

for the period 1951:Q1 - 2007:Q1, and measuring the cyclical component after HP detrending with

a smoothing parameter of 1,600, the empirical value of the elasticity of the finding rate with respect

to aggregate productivity is 2.9.12,13 To the best of our knowledge, this empirical elasticity has not

12This elasticity corresponds to the coefficient obtained in an OLS regression of log job finding probability on
log aggregate productivity. The data on unemployment, vacancies, output and productivity were downloaded from
the webpage of Pascal Michaillat (https://sites.google.com/site/pmichaillat/) and correspond to the quarterly aver-
age of the series compiled by Michaillat from underlying BLS and JOLTS/Conference Board data. The quarterly
job-finding probability constructed from underlying BLS data by Shimer was downloaded from his research web-
page (https://sites.google.com/site/robertshimer/research/flows). Both Michaillat (2012) and Shimer (2005) use HP
smoothing parameter 105 — neither reports this particular elasticity of the finding rate with respect to aggregate
productivity,

13We are grateful to Ana Lariau for collecting these data in a way consistent with both the Shimer and Michailliat
analyses and for computing the cyclical elasticities.
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directly appeared in the existing literature.14

2.4 Comparison with Search and Matching

We compare the amplification effects in an efficient selection model to an efficient search and

matching model. The matching function is assumed to be Cobb-Douglas, with α ∈ (0, 1) denoting

the matching elasticity with respect to unemployed individuals. The job-creation condition is

κ

(1− α) θ−αt
= zt − b−

καθ1−αt

(1− α) θ−αt
+ (1− ρ)Et

{
βu′(ct+1)

u′(ct)

κ

(1− α) θ−αt+1

}
, (9)

where κ denotes the cost of posting a vacancy and θ stands for market tightness.

Around the deterministic steady state, the efficient elasticity of the job-finding rate with respect

to productivity is
∂ ln η

∂ ln z
=

(
z

z − b

)(
1− α
α

)(
1− β (1− ρ) + α

1− β (1− ρ) + 1

)
(10)

(see Appendix F for details). In contrast to the efficient selection model, the outside value of b

plays an important role. Targeting a long-run job-finding rate of η(ε̃) = 0.58, and using α = 0.72

(as in Shimer (2005)) and b = 0, the efficient matching model delivers an elasticity of 0.29, which

is roughly four times smaller than in the baseline version of our efficient baseline selection model

with the uniform distribution. Section 3 shows quantitatively that amplification in the selection

model is somewhat larger with other distributional forms.

With moderate levels of the outside option (e.g. b = 0.4, as in Shimer (2005)) and continuing to

set a long-run job-finding rate of η(ε̃) = 0.58, the steady-state elasticity in the efficient search and

matching model is still only less than a half compared to the efficient selection model. Thus, our

brief comparison to the efficient search and matching model shows that efficient selection generates

larger amplification effects.

3 Labor Markets II: Quantitative

We now describe the calibration of the model.

14Mortensen and Nagypal (2007) measure the elasticity of labor market tightness with respect to productivity,
which is not exactly the elasticity we are estimating. Furthermore, as in Michaillat (2012) and Shimer (2005), they
also use an HP smoothing parameter 105.
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3.1 Micro-Empirical Evidence

We now impose microeconomic discipline to calibrate the key parameters of the model, which are

the pair of distributional parameters (γh, σ∗ε) and the non-market “outside option” b.15 The focus

is on the steady state calibration, hence we omit time indices and normalize z = 1 without loss of

generality.

To highlight the two important distributional parameters, for this section (and Section 3.5

below) we include both ε̃ and σ∗ε as arguments to the endogenous outcomes H(ε̃, σ∗ε), η(ε̃, σ∗ε), and

so on. Next, to further ease economic interpretation, we rearrange the terms inside the square

brackets in (1) in two steps. First, rewrite it slightly as

n+ s · (1− η(ε̃, σ∗ε)) · b− s · η(ε̃, σ∗ε)

(
γh +

H(ε̃, σ∗ε)

η(ε̃, σ∗ε)

)
. (11)

Second, after defining the average steady-state training cost of a new hire as

TC(ε̃, σ∗ε) ≡ γh +
H(ε̃, σ∗ε)

η(ε̃, σ∗ε)
, (12)

we can further rewrite (11) as

n+ s · (1− η(ε̃, σ∗ε) · b− s · η(ε̃, σ∗ε) · TC(ε̃, σ∗ε). (13)

The second term in (12) is the average idiosyncratic component of training costs across all new

workers, which arises (refer to Section 2) from integration across all newly-hired workers’ flow

surpluses 1− (γh + εi) ∀εi ≤ ε̃.
Our baseline calibration uses microeconomic evidence on training costs from Barron, Black, and

Loewenstein (1989) to pin down the two critical parameters γh and σ∗ε . There is a treasure trove

of papers in the micro-labor literature that document first moments for various components of the

hiring process, including short-term training costs for new workers. To the best of our knowledge,

Barron, Black, and Loewenstein (1989) is the only one that also measures second moments.

Barron, Black, and Loewenstein’s (1989) study reports that the standard deviation of training

costs during a new hire’s first three months of employment is 207 hours, and the mean training

cost for those individuals is 151 hours.16 Translating these into days, the standard deviation is 26

days, and the mean is roughly 19 days during the first quarter of work.17

15For the sake of illustration, one can refer to Figure 2, but keep in mind that the distinction between σ∗ε and the
population standard deviation σε is true for any distributional form considered (we consider below several distribu-
tional shapes).

16See Barron, Black, and Loewenstein (1989, Table 1, p. 5).
17These translations assume an eight-hour workday for new hires (as well as incumbent workers, but that is

irrelevant for the calibration at hand). An eight-hour workday is tantamount to the “intensive margin” of labor being

10



Parameter Interpretation Value Notes

Distributional Parameters

TC(·) Average of new hires’ training costs 0.30 use to calibrate γh

(from Barron et al (1989))
σ∗ε Cross-sectional SD of distribution for 0.40 from Barron et al (1989)

for new hires’ idiosyncratic characteristics

Typical Parameters

r Real interest rate 0.01
ρ Exogenous separation rate 0.10
z Steady-state labor productivity 1
ρz AR(1) persistence of exogenous 0.95

log zt productivity
σεz Standard deviation of exogenous innovation 0.01 εz ∼ N(0, σ2εz)

to log productivity
lfp Labor force participation 0.74 from Veracierto (2008)

Table 1: Parameter values for partial equilibrium model. Parameter values for the partial equilibrium

model in Section 2 and Section 3 for several distributional forms. The distributional parameter σε is a

population moment, whereas σ∗
ε is the sample moment. For any given distribution, the population moment

σε is chosen so that the endogenous σ∗
ε that emerges is consistent with the micro evidence.

The model described in Section 2 requires training costs denominated in units of goods. One

quarter has roughly 5
7 · 90 ≈ 65 working days; with an eight-hour work day, total hours in market

work ≈ 500 per quarter. Due to the linearity of market production in labor in the model built thus

far and given that every worker’s steady-state marginal product is z = 1 goods, every unit of time

spent in market work produces one unit of market output. Barron et al’s evidence can thus be

easily stated through the lens of our framework as TC(·) = 151
500 ≈ 0.30 and σ∗ε = 207

500 ≈ 0.40. The

first two lines of Table 1 summarize this.

Aside from the uncontroversial “typical parameters” at the bottom of Table 1 (including pa-

rameters for the exogenous forcing process zt), the other main model parameter to be calibrated is

the outside option b. For any given distributional form (which the Barron et al evidence does not

pin down) considered in our experiments, b is chosen to target a steady-state quarterly job-finding

probability of η(ε̃) = 0.58.

fully utilized. But, as noted in Section 2.1, our framework abstracts from the intensive margin.
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3.2 Quantitative Verification of Analytical Example

Returning to the analytical example in Section 2, Figure 3 displays impulse responses for the finding

rate and the unemployment rate for the U [−1.2, 1.2] distribution. On impact of the one-percent

persistent productivity shock, the job-finding rate rises by about 1.2 percent (in blue in the upper

left panel of Figure 3), which is in line with the analytical elasticity computed in expression (8). In

order to achieve the steady-state quarterly finding rate η(ε̃) = 0.58, the outside option needed for

the U [−1.2, 1.2] case is b = 0.53.

A natural question is whether or not this outside option is “large.” The natural benchmark

is the efficient search and matching model. The well-known Shimer (2005) analysis supposes an

outside option of roughly 40 percent; our 50 percent outside option is in line with it. In turn, the

choice of b in the selection framework is conditional on the assumed distributional form, which in

Figure 3 is the U [−1.2, 1.2] case.

3.3 Quantitative Results for Several Distributional Forms

We now consider other distributional forms, in particular the normal distribution N(0, σ2ε) and the

log-normal lnN(µ, σ2ε) that allow for curvature in η′(ε̃). Compared to the U [−1.2, 1.2] distribution,

Figure 3 shows that the impact amplification based on N(0, σ2ε) is somewhat larger, and that for

the lnN(µ, σ2ε) is quite similar.18 The log-normal distribution allows us to capture the fact that

the cross-sectional training cost distribution in Barron, Black, and Loewenstein (1989) is skewed

(no firm reports negative training costs).

Table 2 reports results for the same experiment, but now allows for smaller and larger different

sample standard deviations (σ∗ε) (across rows) and different distributional forms (across columns).

Not surprisingly, for each distribution, the volatility of the finding rate decreases as σ∗ε increases.

As discussed in Section 3.7 below, σ∗ε = 0.6 should be considered as an extreme upper bound for the

model calibration. Despite the bit of amplification differences amongst the various distributional

assumptions, the main message that Figure 3 and Table 2 convey is that the micro-disciplined

efficient selection model achieves meaningful macro-level labor-market volatility.

3.4 The Role of the Outside Option

The outside option b plays a different role in the selection framework, as now demonstrated. Recall

that b does not appear in the analytical steady-state elasticity computed in (7). The implication

is that, up to first order, the sensitivity of the finding rate η(ε̃) to aggregate productivity does not

18In order to maintain a steady-state job-finding rate η(ε̃) = 0.58, the outside options required for the N(0, σ2
ε)

case and the lnN(µ, σ2
ε) case are, respectively, b = 0.62 and 0.57.
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Figure 3: Impulse response profiles, with various distributional forms for idiosyncratic charac-

teristics. The blue lines display impulse responses for the U [−1.2, 1.2] distribution, the black dashed-dotted

lines for the N(·) distribution, and the red dashed lines for the lnN(·) distribution. Upper row displays log

deviations from steady state. Lower row displays levels. The endogenous sample standard deviation in the

selection model is σ∗
ε = 0.40.

σ∗ε U [−1.2, 1.2] N(0, σ2ε) lnN(µ, σ2ε)

0.2 2.23 3.49 2.31
0.4 1.12 1.66 1.21
0.6 0.74 1.10 0.81

Table 2: Volatility of Hiring Rate η(ε̃) for Different Distributions and Sample Standard Devi-

ations σ∗
ε . The bolded middle row highlights the micro-evidence provided in Barron et al (1989).
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depend on b and hence does not depend directly on the social surplus z−b. This is in sharp contrast

to an efficient version of a labor search and matching model, as demonstrated in Section 2.4.19

From here on, we use the lnN(µ, σ2ε) distribution for idiosyncratic characteristics due to its

skewness. Using log-normal traits, Figure 4 shows that, so long as the calibration of the selection

model is such that the long-run finding rate is η(ε̃) = 0.58, variations in b do not affect dynamics.

Figure 4 illustrates impulse response function with a targeted finding rate η(ε̃) = 0.58 and b = 0.

The impulse response function is literally the same as with b = 0.53 (see our baseline scenario). An

alternative experiment is to hold γh constant as b varies. Figure 4 displays results for b = 0, 0.2, 0.4.

When b increases, but all other parameters of the model remain constant, the social planner sends

fewer people to work due to the smaller gap between market production and the value of the outside

option. Thus, the long-run job-finding rate declines and unemployment rises. The upper left panel

of Figure 4 shows that a larger b increases the absolute deviations from steady state. When the

job-finding rate drops, the cutoff point moves to a point in the log-normal distribution where the

density function has more mass. The upper left panel shows that the log-deviations for b = 0.2 and

b = 0.4 increase by a lot more than the absolute deviations. The reason is that larger values of b

reduce the job-finding rate from 58% to 40% to 14%, respectively.

While this second exercise (varying b and keeping all other parameters fixed) is conceptually

interesting, the first exercise (fixing the job-finding rate and varying b and γh) corresponds more

closely to experiments performed in the search and matching literature. Hagedorn and Manovksii

(2008) target, for example, a similar steady state as Shimer (2005), but vary two parameters

(bargaining power and value of leisure). Note that we focus exclusively on the efficient benchmark

of the selection model.

3.5 Average Output Lost in Training

In the analysis so far, training costs on average cause (referring to expression (12)) a reduction of

TC(ε̃t, σ
∗
ε) = γh +

H(ε̃t, σ
∗
ε)

η(ε̃t, σ∗ε)
(14)

units of output.20 We relax this assumption by introducing an “average output loss” parameter

φ ∈ (0, 1]. Including the output loss parameter, the social planner maximizes

maxE0

∞∑
t=0

(
1

1 + r

)t [
ztnt + st(1− η(ε̃t, σ

∗
ε))b− φ · st · η(ε̃t, σ

∗
ε)

(
γh +

H(ε̃t, σ
∗
ε)

η(ε̃t, σ∗ε)

)]
(15)

19For the role of training costs in search and matching models, see Silva and Toledo (2009).
20Expression (14) with time subscripts is equivalent to expression (12) without time indices because all training

costs for new employees are incurred within a period.
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Figure 4: Impulse response profiles for several values of b. Upper row displays log deviations

from respective steady states, bottom row displays absolute deviations from respective steady states. Black

dashed line: b = 0. Blue crossed line: b = 0.20. Solid red line: b = 0.40. Idiosyncratic characteristics

∼ lnN(1, 0.302).
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subject to

nt = (1− ρ)nt−1 + η(ε̃t, σ
∗
ε) (lfp− (1− ρ)nt−1) . (16)

For the sake of economic intuition provided at the end of this sub-section, we intentionally include

σ∗ε as an argument to the endogenous outcomes H(ε̃, σ∗ε) and η(ε̃, σ∗ε).

Maximization leads to a slightly generalized efficient selection condition,

φ ·
(
γh + ε̃t

)
= zt − b+ φ ·

(
1− ρ
1 + r

)
Et
{
H(ε̃t+1, σ

∗
ε)− ε̃t+1η(ε̃t+1, σ

∗
ε) + γh + ε̃t+1

}
, (17)

compared to the selection condition (4). In turn, the steady-state elasticity of the finding rate with

respect to aggregate productivity also slightly generalizes to

∂ ln η(ε̃, σ∗ε)

∂ ln z
=

1

φ
· η
′(ε̃, σ∗ε)

η(ε̃, σ∗ε)
· z ·

(
1 + r

r + ρ+ (1− ρ) η(ε̃, σ∗ε)

)
. (18)

For any given φ, we target the empirically-relevant long-run finding rate η(ε̃, σ∗ε). Thus, η′(ε̃, σ∗ε)

is unchanged by φ because the selection threshold ε̃ is at the same location in the density function.

Expression (18) then informs us that as output loss φ declines, the elasticity of hiring increases. As

noted in Section 3.3, a decrease in φ qualitatively affects η(ε̃, σ∗ε) in a similar manner as would a

decrease in the population dispersion parameter σ∗ε . However, as described in Section 3.1, the latter

would contradict the micro-discipline we use regarding σ∗ε . Intuitively, then, we consider φ = 1 as

establishing a lower bound for the sensitivity of the job-finding rate with respect to productivity

shocks. Thus, for the remainder of our analysis, we will continue with φ = 1.

3.6 Sequential Search

So far, we have assumed that each unemployed individual makes one contact per period. It is natural

and perhaps realistic to consider the case of multiple contacts per period. Supposing the number

of contacts per period is exogenous, as is the case in the well-known sequential search framework à

la McCall (1970), Mortensen (1970), and others, this is easily captured in our framework.

Let i denote the exogenous number of contacts per period that occur in Poisson fashion. Our

analysis above (implicitly) considered the case of i = 1. Now let i ∈ {2, 3, 4, ...}. For ease of

discussion, let’s consider the simple case of i = 3 because it corresponds to a monthly frequency.21

As mentioned in the Introduction and described in Section 3.1, the microeconomic data used to

discipline the cross-section of the distribution of idiosyncratic match quality is at the quarterly

frequency. To the best of our knowledge, corresponding data for the distribution of match quality

at finer levels (monthly, say) do not exist. A formal analysis of the i ∈ {2, 3, 4, ...} cases, though,

21Alternatively, we could consider i = 12 if we were interested in the weekly frequency.
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would require it.

A natural inclination might be to assume that the distributional form of monthly-level match-

quality dispersion has the same distributional form as is assumed for the quarterly level. However,

the micro-disciplined distributional assertion at the quarterly level implies nothing about the con-

volution between the monthly-level distribution and the quarterly-level distribution. What follows

in the remainder of this paragraph is essentially a proof by contradiction, which could be formalized

as a short lemma. Taking the case of the uniform for the sake of simplicity, the reason the assump-

tion is incorrect is that the convolution of (monthly) uniform distributions leads to a triangular

distribution, rather than to a uniform distribution. But this then contradicts the initial assertion

of the uniform distribution at the quarterly level.

This “proof by contradiction” is of course not true for every distribution. For example, con-

volution of normal distributions leads to a normal distribution. But for, say, the more realistic

log-normal distribution which displays the skewness shown by Barron et al, convolution theory

does not hold.

This argument makes it seem that the framework cannot generate any results at all upon

inclusion of sequential search. This is not true, because we can use another data source to discipline

cross-sectional evidence at the monthly level.

3.7 Micro-Empirical Evidence on Wages and Sequential Search

In addition to being uninformative about the monthly frequency, the EOPP training cost survey

may provide an over- or underestimation for our purposes. On the one hand, there are other idiosyn-

cratic heterogeneities for newly-hired workers besides training costs (e.g., differences in idiosyncratic

productivity). This leads to a potential underestimation for the overall idiosyncratic heterogene-

ity. On the other hand, the training cost survey does not differentiate between idiosyncratic and

systematic components (e.g., related to education).22 However, in the context of our model, only

the idiosyncratic component is relevant; we abstract from the systematic component.23 Since the

survey does not differentiate these two components, this leads to a potential overestimation of the

dispersion of the idiosyncratic component.24 We thus turn to a second reference point: analyzing

the hourly wages for entrants (i.e. workers who move from unemployment to employment), based

on Haefke, Sonntag, and van Rens (2013) who use the Current Population Survey (CPS).25

22Barron, Black, and Loewenstein (1989) show, for example, that high-skilled workers require more time to be
trained.

23We would, for example, assume that low-skilled and high-skilled workers act in different labor markets and both
draw idiosyncratic training costs.

24Ideally, we would have a dataset which allows us to quantify the dispersion of match-specific idiosyncratic produc-
tivity shocks for new jobs in the United States (controlling for worker and establishment/firm fixed effects). However,
to the best of our knowledge, such a dataset is not available.

25The data is available online http://www.thijsvanrens.com/wage/
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In order to be able to use wage data, we show for the decentralized model with exogenous labor

force participation and standard Nash bargaining that the entire surplus has to go to the new worker

in order to decentralize the social planner solution (see Appendix D for the proof).26 Atomistic firms

do not take into account that their hiring behavior affects the future pool of searching workers (as

the social planner does). If part of the bargaining surplus goes to firms, this leads to a suboptimal

level of searching workers. If the entire surplus goes to workers, they internalize this externality.

Thus, in an efficient economy the wages of entrants correspond to their respective productiv-

ity (aggregate productivity and the idiosyncratic component). This allows us to look at wage data

through the lens of our model. We analyze the hourly wages for entrants, based on Haefke, Sonntag,

and van Rens (2013). See Appendix H for details. The coefficient of variation for new entrants

is roughly 0.6, both on the monthly and quarterly level. Note that we consider the coefficient of

variation of entrant wages to be an extreme upper bound for match-specific idiosyncratic produc-

tivity because it does not control for all sorts of observable and unobservable characteristics (in

particular, not for establishment and worker fixed effects), which are abstracted from in our model.

Card, Heining and Kline (2013, see their Figure IV) show with a rich employer-employee linked

dataset for Germany that adding industry, occupation and establishment fixed effects reduces the

dispersion of wages substantially, namely by roughly one third.27 Given that it is impossible to

control for fixed effects in our dataset (which represent systematic components that we abstract

from), our benchmark of σ∗ε = 0.4 from the EOPP continues to appear reasonable.

In reality, the bargaining power of households may be smaller than one (i.e., the social planner

solution may not be decentralized). Would the coefficient of variation of wage nevertheless provide

some guidance for our purposes? In order for our model to be stationary in the long run (i.e., for

unemployment not to converge to 0 or 1), we require the following conditions. The dispersion of

idiosyncratic training costs (productivity) has to grow proportionally with aggregate productiv-

ity. In addition, in the long-run wages would have to co-move proportionally with productivity to

establish stationarity.28 We show in Appendix E that under these conditions, the long-run coef-

ficients of variation for productivity (including idiosyncratic productivity) and for wages are the

same. Thus, the coefficient of variation for wages continues to provide an extreme upper bound for

the dispersion of idiosyncratic productivity.

From the sequential search literature, we know the relationship between the per-period job-

26In the model with endogenous labor force participation, the entire surplus also has to go the worker in order to
decentralize efficiency. However, the intuition is different. This condition is necessary for achieving efficient labor-force
participation.

27Recent evidence for the United States by Barth et al. (2014) also emphasizes the importance of establishment
fixed effects for wage dispersion (although not for new jobs, as would be necessary for our work).

28More generally, conventional business cycle and growth models require that productivity and wages comove one
to one in the long run in order to make labor input (employment) stationary.
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finding rate η(ε̃t) and the per-contact finding rate, which we define as ω(ε̃t),

η(ε̃t) =
i∑

j=1

(1− ω(ε̃t))
j−1 ω(ε̃t), (19)

in which i is an integer number that denotes the number of interviews in a given quarter.

For the identification of the standard deviation of idiosyncratic productivity of those hired (σ∗ε),

it is important to know i. Unfortunately, there is no dataset that provides the number of job offers

over time. However, there are various datasets that provide the job arrival/offer rate for a given

point in time and for a given group (depending on the survey). This allows us to determine a

plausible range for i.

Blau and Robins (1990) report a weekly job offer rate for unemployed workers of 18 percent.

Holzer (1987, Table 2) reports a quarterly job offer for unemployed workers of 34 percent. According

to Faberman et al. (2015, Table 8) the number of offers per week of search (conditional on those

actively searching for a job) is 17 percent.

The differences are due to different samples and different points in time when the surveys were

performed. Blau and Robins (1990) use the 1980 household survey of the EOPP. Note that the

contact definition29 in the survey does not correspond to ours, i.e. it is too broad in order to serve

as revelation of information. Thus, we use the job offer rates. Holzer (1987) uses the 1981 New

Youth Cohort of the National Longitudional Survey. Holzer (1987) argues that (despite the focus

on young workers) the survey is very suitable for the analysis of search behavior. Faberman et

al. (2015) use a recent supplement to the Survey of Consumer Expectations (SCE), administered

monthly by the Federal Reserve Bank of New York.

For our purposes, we require the average number of job offers per quarter (i.e., i in the above

equation). Thus, we assume that job offers arrive with Poisson probability and we calculate how

long it takes on average to obtain one job offer, which we denote by D (for duration). With

probability (1-job arrival rate), there will not be a job offer for one period, with probability (1-job

arrival rate)2, there will be no offer for two periods, etc. Thus, in steady state, the average waiting

time for a job offer is

D =
∞∑
k=1

(1− jar)k (20)

=
1

jar
, (21)

29“How many places of employment did you contact by phone, mail or in person as a result of a certain search
method?” This is a stage of the application process where no actual job application is filled out and thus there is
insufficient information about the actual realization of idiosyncratic shocks. The survey does not contain any question
on the number of actual interviews.
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where jar is the job arrival rate.

According to Blau and Robins’ (1990) numbers it would on average take 1/0.18=5.6 weeks to

obtain a job offer. According to Faberman et al. (2015), it would on average take 1/0.17=5.7

weeks to obtain a job offer. According to Holzer (1987) it would on average take 1/0.34=2.9

months to obtain a job offer. Thus, these different surveys provide a plausible range for the average

time to get one job offer for in between 5.6 and almost 12 weeks. The latter corresponds to our

baseline calibration with one contact per quarter. The former is within our range of robustness

checks below where we also assume that a job offer arrives on average every month. Given that

our robustness checks do not deliver considerably different results, we argue that we have chosen

plausible assumptions in this dimension.

To illustrate the effects of multiple meetings in the selection framework, let’s start with an

approximation of the non-linear expression (19), which is

η(ε̃t) = m · ω(ε̃t). (22)

This approximation is useful for conveying the main messages of the framework upon inclusion of

sequential search.

Using (22), the social planning problem is

maxE0

∞∑
t=0

(
1

1 + r

)t [
ztnt + st(1−m · ω(ε̃t)) · b− st ·m · ω(ε̃t) ·

(
γh +

H(ε̃t)

ω(ε̃t)

)]
(23)

subject to

nt = (1− ρ)nt−1 +m · ω(ε̃t) · (lfp− (1− ρ)nt−1) , (24)

which yields the efficient selection condition

γh + ε̃t = zt − b+

(
1− ρ
1 + r

)
Et

{(
H(ε̃t+1)

ω(ε̃t+1)
− ε̃t+1

)
m · ω(ε̃t+1) + γh + ε̃t+1

}
. (25)

Given efficient selection as characterized in (25), the steady-state elasticity of the finding rate

with respect to productivity is now

∂ ln η(ε̃)

∂ ln z
=
ω′(ε̃)

ω(ε̃)
· z ·

(
1 + r

r + ρ+ (1− ρ) η(ε̃)

)
. (26)

The term in parentheses on the right-hand side is exactly the same as in expression (7), which

(implicitly) was for the m = 1 case. However, η′(ε̃)
η(ε̃) is replaced by ω′(ε̃)

ω(ε̃) . Thus, the relative size

of these two expressions (η
′(ε̃)
η(ε̃) versus ω′(ε̃)

ω(ε̃) ) will determine whether m > 1 increases or decreases
∂ ln η(ε̃)
∂ ln z . There turn out to be two countervailing effects. Both the numerator and the denominator
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become smaller when m rises.30 Analytically, it is unclear which effect dominates.

Thus, we proceed with a numerical illustration. We choose m = 1.65 and m = 2.30.31 With the

log-normal distribution, the job-finding rate is now 1.7 and 1.8 times more volatile, respectively,

than productivity. This is somewhat larger than our baseline results (which was 1.2) with the

log-normal distribution.

The fixed m in the approximation (25) allows us to easily convey the main economic intuition.

If we instead use the exact nonlinear expression (19) in the social planning problem stated in (23)

and (24), Appendix B displays the exact efficient selection condition, which delivers quantitatively

similar results (based on a numerical solution). Based on the exact efficient selection condition,

computing analytically the steady-state elasticity of the finding rate with respect to productivity

is very difficult and does not provide an interpretable expression.

Given the similar numerical results we obtain from the approximated model for i = 2 and i = 3

job arrivals, and the difficulty of computing the steady-state elasticity from the exact selection

condition, in what follows we will proceed with i = 1 (one contact per quarter). In addition, we

have shown above that i = 1 is within the range of plausible empirical values.

4 Labor Markets in General Equilibrium

All of the analysis in Section 2 and 3 is partial equilibrium in nature. We now show that the

intuition and main results carry over once endogenous labor supply and an aggregate goods resource

constraint are introduced. In general equilibrium, the amplification effects of the partial equilibrium

analysis carry over with little change. Figure 5 displays the timing of events in general equilibrium.

4.1 Preferences

As in the model in Sections 2 and 3, there is a measure one of individuals in the economy. However,

in this extended model, individuals may be in one of three labor-market states: employed, not

working but searching for employment, or outside the labor force. Three labor-market states allow

for broader generality of the efficiency results. Regardless of labor-market status, each individual

has full consumption insurance, which is modeled by assuming a representative household that

pools income and shares consumption equally amongst all individuals. This “large household”

assumption is a tractable and often-used way of modeling perfect consumption-risk insurance and

is standard in the DSGE literature.

30Remember that we target a certain job-finding rate on the quarterly level η(ε̃). With multiple interviews per

quarter, the selection rate per interview drops. Thus,
H(ε̃t+1)

ω(ε̃t+1)
falls. And for a targeted σ∗ε , the dispersion of the

idiosyncratic shock has to be larger. This explains why ω′(ε̃) should drop. Given that η(ε̃) = m · ω(ε̃t), the
denominator also declines.

31This corresponds to i = 2 and i = 3 in the exact non-linear expression (19).
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Period t-1 Period t+1Period t

Aggregate 
state 

realized

nt-1 nt

Production (using nt 
employees) occurs, 
goods markets and 
asset markets meet 

and clear

Employment 
separation 

occurs (ρnt-1 
employees 
separate)

Selection of 
applicants, who 
begin working 
immediately

nt = (1-ρ)nt-1 + ηtst

yields

Optimal 
labor-force 

participation 
decisions: st 
individuals 
search for 

jobs

(1-ρ)nt-1 individuals counted 
as employed, st individuals 

counted as searching

Figure 5: Timing of events.

The representative household has lifetime expected utility function

E0

∞∑
t=0

βt [u(ct)− v (nt + (1− ηt)st)] , (27)

in which lfpt ≡ nt + (1− ηt)st. The subjective discount factor is β ≡ (1 + r)−1, the function u(.)

is a standard strictly-increasing and strictly-concave subutility function over consumption, and the

function v(.) is strictly increasing and strictly convex in the size of the labor force. The convexity

of v(.) at the level of the representative household can be shown in exactly the same way as in

Mulligan (2001), with individual-level heterogeneity of the disutility of indivisible units of labor.

Thus, v(.) can be flexibly parameterized, rather than displaying quasi-linearity.32 The measure of

individuals in the labor force is endogenous, which is not the case in Sections 2 and 3, but has

become fairly common in the recent matching literature.33 For intuition and because it facilitates

analogy with both the RBC model and the basic matching model, it will be helpful to interpret

the measure 1 − lfpt of individuals outside the labor force as enjoying leisure. We thus use the

terms leisure and non-participation interchangeably, or, respectively, labor supply and labor force

participation interchangeably.

32Given the definitions presented above, we sometimes will write v(lfpt).
33In a variety of applications, Veracierto (2008), den Haan and Kaltenbrunner (2009), Krusell, Mukoyama, Roger-

son, and Sahin (2009), Ebell (2011), Haefke and Reiter (2011), and Arseneau and Chugh (2012), among others, have
introduced participation margins into matching models.
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4.2 Resource Use

The aggregate goods resource constraint

ct = ztnt − stη(ε̃t)

(
γh +

H(ε̃t)

η(ε̃t)

)
. (28)

Note that the b term from Sections 2 and 3 does not appear in the resource constraint. Recall that

b can be interpreted in a few different ways: 1) the utility value of leisure; 2) government-provided

unemployment benefits; and 3) home production. The preference specification (27) already embeds

a value of leisure, which is the utility of being outside the labor force (which, without loss of gener-

ality, is normalized to zero). Second, even if we included a government in the general equilibrium

model that provides unemployment benefits, these benefits would not appear in (28).34 Finally,

meaningfully including “home production” in general equilibrium would require an additional home

production resource constraint along with utility from “home-consumption” (in the sense of, say,

Greenwood, Rogerson, and Wright (1995)), which is outside the scope of our analysis and better

left for future research.

The evolution of aggregate employment continues to be described by

nt = (1− ρ)nt−1 + η(ε̃t)st, (29)

with nt and st now interpreted as economy-wide measures.

4.3 Efficient Allocations

Efficient allocations {ct, st, ε̃t, nt}∞t=0 are characterized by four (sequences of) conditions: a labor-

force participation (LFP) condition

v′(lfpt)

u′(ct)
= ε̃tη(ε̃t)−H(ε̃t), (30)

a general equilibrium version of the selection condition

γh + ε̃t = zt + (1− ρ)Et

{
βu′(ct+1)

u′(ct)

[
H(ε̃t+1)− ε̃t+1η(ε̃t+1) + γh + ε̃t+1

]}
, (31)

and conditions (28) and (29). The efficiency conditions (30) and (31) are obtained by maximizing

household welfare (27) subject to the technological frontier defined by the sequence of goods resource

constraints (28) and laws of motion for employment (29). The formal analysis of this problem is

34Due to the fact that we are considering only efficient allocations, which in turn would require lump-sum taxation
to provide those benefits.
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virtually identical to that in the partial equilibrium model.35

Condition (30) is a within-period dimension of efficiency and is analogous to consumption-

leisure efficiency in the RBC model. Condition (31) is an intertemporal dimension of efficiency,

and it extends the partial equilibrium selection condition (4) to general equilibrium by bringing the

stochastic kernel βu′(ct+1)/u
′(ct) in to replace (1 + r)−1.

4.4 Quantitative Results

4.4.1 Calibration

As in the partial equilibrium model, the model frequency is quarterly, so the subjective discount

factor is set to β = 0.99 and the separation rate to ρ = 0.1. For utility, standard functional forms

are used, u(ct) = ln ct and v(lfpt) = κ
1+1/φ lfp

1+1/φ
t . The parameter φ is the elasticity of labor-force

participation with respect to the real wage, which is set to φ = 0.18 following Arseneau and Chugh’s

(2012) calibration of a matching model with endogenous participation fit to U.S. data. The scale

parameter is set to κ = 6.35 to deliver a steady-state participation rate of 74 percent, the long-run

U.S. empirical measure reported by Veracierto (2008).

The distribution of random training costs is assumed to be log-normal, lnN
(
µ, σ2ε

)
. We target

σ∗ε = 0.4 in our baseline version and σ∗ε = 0.2 and σ∗ε = 0.6 as robustness checks.36

The steady state selection rate is calibrated to η(ε̃) = 0.58 to generate an unemployment rate of

5 percent. We choose the fixed training cost parameter γh is chosen to obtain the targeted steady

state selection rate.37 Note that the unemployment rate is normalized by the entire population (i.e.

also those who are out of the labor force). By dividing this number by the labor force participation

rate 0.74, we obtain an unemployed / active population ratio of 0.068, which is in line with the

conventionally reported unemployment rate.

Finally, as in the partial equilibrium analysis in Section 2, the only source of aggregate risk

remains aggregate productivity shocks, which follows the same AR(1) process ln zt = ρz ln zt−1+εzt ,

with identical parameters ρz = 0.95 and σεz = 0.01.

4.4.2 Results

Table 3 provides business-cycle statistics for the U.S. economy, to which we compare our model’s re-

sults. The top panel of Table 4 displays results for the baseline calibration of the general equilibrium

model, while Figure 6 presents results in impulse-response form.

35The formal analysis appears in Appendix G.
36The baseline quantitative values we thus set are µ = 1 and a population standard deviation σε = 0.3. In our

robustness checks, we have µ = 0.35 and population standard deviation σε = 0.3 (which delivers sample standard
deviation σ∗ε = 0.2) and µ = 1.4 and population standard deviation σε = 0.3 (which delivers σ∗ε = 0.6).

37As discussed in Section 2, γh is required to fix the steady-state level of the job-finding rate. But for a given
job-finding rate γh is not important for the elasticity with respect to aggregate productivity.
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gdp n ue lfp η(ε̃)

Relative standard deviation (/gdp) 1 0.60 5.15 0.20 3.72
Autocorrelation 0.87 0.94 0.91 0.68 0.82
Correlation with gdp 1 0.78 -0.86 0.39 0.79

Table 3: Cyclical Dynamics of U.S. Labor Markets. Quarterly business-cycle statistics for the job-

finding rate η(ε̃) computed by authors’ research assistants. Remainder of quarterly business-cycle statistics

from Arseneau and Chugh (2012, Table 1).
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Figure 6: Impulse response profiles in general equilibrium. Idiosyncratic characteristics ∼
lnN(1, 0.302).

25



As in the partial equilibrium version in Section 3, empirically realistic fluctuations of the find-

ing rate and unemployment arise. The participation rate, which is also now endogenous, fluctuates

slightly less relative to GDP fluctuations than reported by Veracierto (2008) for U.S. labor mar-

kets, and slightly less than in an efficient version of the labor search and matching framework

with endogenous participation as shown in Arseneau and Chugh (2012). Regarding cyclicality,

both Table 4 and the impulse responses in Figure 6 show that the model generates participation

fluctuations that are procyclical with GDP and are in line with the U.S. data presented in Table 3.

Figure 6 shows that the amplification of the job-finding rate has the same order of magnitude

in general equilibrium as in partial equilibrium (compare to Figure 4). In contrast to the partial

equilibrium model, the job-finding rate is somewhat more persistent due to movements of the

stochastic discount factor. The autocorrelation of the job-finding rate is very close to the one

observed in the data (compare Tables 3 and 4). The lower two panels of Table 4 provide results for

smaller and larger values of σ∗ε than our benchmark σ∗ε = 0.6, in which the main messages continue

to hold.

5 Conclusion

We have proposed a simple labor-selection model, based on the idea that firms select workers from

a pool of applicants. We have solved the social planner problem of this economy, both in partial

and in general equilibrium. In both cases, our model generates realistic business cycle statistics,

most importantly strong amplification effects of the finding rate and unemployment. This is in

sharp contrast to the efficient version of the search and matching framework.

This paper is the starting point for a variety of new questions. By adding match-specific shocks

for incumbent workers and thereby generating endogenous separations, our framework is a natural

framework for the analysis of frictional wage dispersion. Search models (without on-the job-search)

have problems to replicate a sufficient degree of wage dispersion (Hornstein, Krusell and Violante

(2011)). Our model may shed new light on this issue.

In addition, the primitives in our proposed framework are observable. While it is impossible to

observe the matching function directly, it is possible to provide survey evidence on training costs

(although the existing evidence is somewhat scarce) or idiosyncratic productivity. Thus, this allows

a tighter connection of micro-evidence and macro-modeling. The dispersion of training costs may

for example have shifted over time due to technological advances. Further microeconomic evidence

would generate testable assumptions for macroeconomic dynamics.
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gdp n ue lfp η(ε̃) z

Efficient allocation, baseline cross-sectional SD (σ∗ε = 0.40)

Mean 0.69 0.69 0.05 0.74 0.58 1
Volatility (SD%) 1.48 0.27 2.29 0.11 1.23 1.30
Relative standard deviation (/gdp) 1 0.20 1.54 0.07 0.83 0.88
Autocorrelation 0.75 0.95 0.91 0.95 0.85 0.71
Correlation with gdp 1 0.80 -0.91 0.58 0.98 0.99

Efficient allocation, smaller cross-sectional SD (σ∗ε = 0.20)

Mean 0.69 0.69 0.05 0.74 0.58 1
Volatility (SD%) 1.48 0.36 2.64 0.18 1.47 1.30
Relative standard deviation (/gdp) 1 0.25 1.78 0.12 0.99 0.88
Autocorrelation 0.75 0.96 0.91 0.96 0.86 0.71
Correlation with gdp 1 0.58 -0.80 0.30 0.91 1.00

Efficient allocation, larger cross-sectional SD (σ∗ε = 0.60)

Mean 0.69 0.69 0.05 0.74 0.58 1
Volatility (SD%) 1.47 0.20 1.94 0.06 1.02 1.30
Relative standard deviation (/gdp) 1 0.14 1.32 0.04 0.69 0.89
Autocorrelation 0.75 0.92 0.91 0.94 0.83 0.71
Correlation with gdp 1 0.84 -0.88 0.74 0.98 1.00

Table 4: Business Cycle Statistics. Upper panel presents second moments for the baseline calibration

of cross-sectional dispersion of newly-hired workers, σ∗
ε = 0.40. Second panel presents second moments for a

tighter cross-sectional dispersion, σ∗
ε = 0.20. Third panel presents second moments for a wider cross-sectional

dispersion, σ∗
ε = 0.60. Business-cycle statistics obtained using HP parameter 1,600.
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A Partial Equilibrium Model

The social planner optimization problem is

maxE0

∞∑
t=0

(
1

1 + r

)t [
ztnt + st(1− η(ε̃t))b− stη(ε̃t)

(
γh +

H(ε̃t)

η(ε̃t)

)]
(32)

subject to the endogenous law of motion for employment

nt = (1− ρ)nt−1 + η(ε̃t) (lfp− (1− ρ)nt−1) , (33)

in which lfp is an exogenous labor force participation rate, and the initial condition n−1 and the

exogenous law of motion for aggregate productivity are taken as given.

The social planner takes into account the dependence of the finding rate and the average op-

erating cost of a newly-selected worker on the threshold ε̃t, which is made explicit in the notation

here. Given that η(ε̃t) ≡
∫
ε≤ε̃t η

′(ε)dε and H(ε̃t) ≡
∫
ε≤ε̃t εη

′(ε)dε, we have H ′(ε̃t) = ε̃tη
′(ε̃t), by the

Fundamental Theorem of Calculus.

Let µt denote the Lagrange multiplier. The first-order conditions of the social planner problem

(in which we have substituted st = lfp− (1− ρ)nt−1) with respect to nt and ε̃t are, respectively,

zt − µt +

(
1− ρ
1 + r

)
Et
{
µt+1 [1− η(ε̃t+1)] +

[
γhη(ε̃t+1) +H(ε̃t+1)− (1− η(ε̃t)) b

]}
= 0 (34)

and

−st
[
γhη′(ε̃t) +H ′(ε̃t) + η′(ε̃t)b

]
+ µtstη

′(ε̃t) = 0. (35)

Isolating the multiplier µt from (35),

µt = γh + ε̃t + b. (36)

Next, substituting expression (36) for µt (and its time t+ 1 counterpart) in (34), we have

γh + ε̃t + b = zt

+

(
1− ρ
1 + r

)
Et
{
u′(ct+1)

[
γhη(ε̃t+1) +H(ε̃t+1)− (1− η(ε̃t)) b

]}
+

(
1− ρ
1 + r

)
Et
{
u′(ct+1)

[
γh + ε̃t+1 + b

]
[1− η(ε̃t+1)]

}
. (37)

Thus, we have the selection condition

γh + ε̃t = zt − b+

(
1− ρ
1 + r

)
Et
{
H(ε̃t+1)− ε̃t+1η(ε̃t+1) + γh + ε̃t+1

}
. (38)
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B Partial Equilibrium Model with Sequential Search

The social planner optimization problem is

maxE0

∞∑
t=0

(
1

1 + r

)t [
ztnt + st(1− η(ε̃t))b− stη(ε̃t)

(
γh +

H(ε̃t)

ω(ε̃t)

)]
(39)

subject to the law of motion for employment

nt = (1− ρ)nt−1 + η(ε̃t) (lfp− (1− ρ)nt−1) , (40)

and the sequential-search-based definition of the quarterly job-finding rate

η(ε̃t) =
i∑

j=1

(1− ω(ε̃t))
j−1 ω(ε̃t), (41)

in which i is an integer that denotes the number of interviews in a given quarter.

The first derivative of the quarterly job-finding rate with respect to the cutoff point is

η(ε̃t)
′ = ω′(ε̃t) ·

i∑
j=1

[
(1− ω(ε̃t))

j−1 − (j − 1) (1− ω(ε̃t))
j−2 ω(ε̃t)

]
. (42)

For analytical convenience, we define

η′(ε̃t) = ω′(ε̃t) · F (ε̃t), (43)

with F (ε̃t) ≡
∑i
j=1

[
(1− ω(ε̃t))

j−1 − (j − 1) (1− ω(ε̃t))
j−2 ω(ε̃t)

]
.

Let βtµt be the Lagrange multiplier on the period-t law of motion for employment, and, for

ease of notation, Ω(ε̃t) ≡ η(ε̃t)H(ε̃t)
ω(ε̃t)

. The first-order conditions of the social planner problem with

respect to nt and ε̃t are, respectively,

zt − µt +

(
1− ρ
1 + r

)
Et
{
µt+1 [1− η(ε̃t+1)] +

[
γhη(ε̃t+1) + Ω(ε̃t+1)− (1− η(ε̃t+1)) b

]}
= 0 (44)

and

−st
[
γhη′(ε̃t) + Ω′(ε̃t) + η′(ε̃t)b

]
+ µtstη

′(ε̃t) = 0. (45)

Isolating the multiplier µt from (45),

µt =
γhη′(ε̃t) + Ω′(ε̃t) + η′(ε̃t)b

η′(ε̃t)
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= γh + b+
Ω′(ε̃t)

η′(ε̃t)

= γh + b+
H(ε̃t)

ω(ε̃t)

(
1− η(ε̃t)

ω(ε̃t)F (ε̃t)

)
+

η(ε̃t)

ω(ε̃t)F (ε̃t)
ε̃t. (46)

Using this expression immediately above, the selection condition is

γh +
H(ε̃t)

ω(ε̃t)

(
1− η(ε̃t)

ω(ε̃t)F (ε̃t)

)
+

η(ε̃t)

ω(ε̃t)F (ε̃t)
ε̃t = zt − b (47)

+

(
1− ρ
1 + r

)
Et

{
γh +

η(ε̃t+1)H(ε̃t+1)

ω(ε̃t+1)

}
+

(
1− ρ
1 + r

)
Et

{(
H(ε̃t+1)

ω(ε̃t+1)

(
1− η(ε̃t+1)

ω(ε̃t+1)F (ε̃t+1)

)
+

η(ε̃t+1)

ω(ε̃t+1)F (ε̃t+1)
ε̃t+1

)
(1− η(ε̃t+1))

}
.
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C Decentralized Economy

Consider a decentralized economy in which a representative “large firm” hires and makes wage

payments to many workers. To establish some notation, define wIt as the period-t wage earned by

any incumbent worker. An incumbent worker is one that has completed at least one full period

of employment and, because they are identical, all incumbent workers earn the same wage. Also

define

ωe(ε̃t) ≡
∫ ε̃t

∞
w(ε)f(ε)dε. (48)

C.1 Firms

In period zero, the representative firm chooses state-contingent decision rules for its desired em-

ployment stock and the threshold operating cost ε̃t below which it is willing to hire in order to

maximize discounted profits

E0

∞∑
t=0

Ξt|0

[
ztnt − γhη(ε̃t)st −

ωe(ε̃t)

η(ε̃t)
η(ε̃t)st − (1− ρ)nt−1w

I
t −

H(ε̃t)

η(ε̃t)
η(ε̃t)st

]
. (49)

In (49), Ξt|0 is the period-0 value to the representative household of period-t goods, which the firm

uses to discount profit flows because households are the ultimate owners of firms. Without any

confusion between firm-level variables and aggregate variables, the hiring rate ηt is understood in

this section to be a consequence of the firm’s decisions, while the firm takes as given the number of

job-seekers st as well as the wage-setting process. Because output is sold in a perfectly-competitive

market, the firm’s problem is to choose ε̃t and nt, ∀t, to maximize (49) subject to a sequence of

perceived laws of motion for its employment level,

nt = (1− ρ)nt−1 + stη(ε̃t). (50)

Letting βtµft denote the Lagrange multiplier on the period-t law of motion (50), the first-order

conditions with respect to ε̃t and nt are

µftη
′(ε̃t)st − ω′e(ε̃t)st − γhη′(ε̃t)st −H ′(ε̃t)st = 0 (51)

and

zt − µft + (1− ρ)Et
{

Ξt+1|t
(
µft+1 − wIt+1

)}
= 0, (52)

in which Ξt+1|t ≡ Ξt+1|0/Ξt|0 is the one-period stochastic discount factor. From (51), the value to
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the firm of an employee can be measured as

µft =
ω′e(ε̃t) + γhη′(ε̃t) +H ′(ε̃t)

η′(ε̃t)

=
w(ε̃t)f(ε̃t) + γhf(ε̃t) + ε̃tf(ε̃t)

f(ε̃t)

= w(ε̃t) + γh + ε̃t, (53)

where the second line follows from the Fundamental Theorem of Calculus. Substituting (53)

into (52),

γh + ε̃t = zt − w(ε̃t) + (1− ρ)Et
{

Ξt+1|t
[
γh + ε̃t+1 + w(ε̃t+1)− wIt+1

]}
, (54)

which is the firm’s hiring (selection) condition.

C.2 Nash Bargained Wages

C.2.1 Value Equation for the Firm

JIt = zt − wIt + (1− ρ)EtΞt+1|tJIt+1 (55)

is the equilibrium value to the firm of an incumbent worker and

JE(εit) = zt − w(εit)− γh − εit + (1− ρ)EtΞt+1|tJIt+1 (56)

is the equilibrium value to the firm of a newly-hired worker with idiosyncratic characteristics εit.

C.2.2 Value Equations for the Household

An incumbent worker in period t has value (measured in period-t goods) to the household

WIt = wIt + Et
{

Ξt+1|t
[
(1− ρ)WIt+1 + ρ

(
η(ε̃t+1)W̄Et+1 + (1− η(ε̃t+1))Ut+1

)]}
.

The value of an unemployed worker is

Ut = b+ Et

{
Ξt+1|t

[
η(ε̃t+1)

(∫ ε̃t+1
−∞ WE(εit+1)f(εit+1)dε

i
t+1

η(ε̃t+1)

)
+ (1− η(ε̃t+1))Ut+1

]}
. (57)

To conserve on notation, denote hereafter W̄Et+1 ≡
∫ ε̃t+1
−∞ WE(εit+1)f(εit+1)dε

i
t+1. The surplus

between these two values is

WIt −Ut
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= wIt − b+ Et
{

Ξt+1|t
[
(1− ρ)WIt+1 + (ρ− 1)

(
η(ε̃t+1)W̄Et+1 + (1− η(ε̃t+1))Ut+1

)]}
.(58)

Based on the same logic as above, a newly-hired worker with idiosyncratic characteristics εit in

period t has value (measured in period-t goods) to the household

WE(εit) = w(εit) + Et
{

Ξt+1|t
[
(1− ρ)WIt+1 + (ρ− 1)

(
η(ε̃t+1)W̄Et+1 + (1− η(ε̃t+1))Ut+1

)]}
,

(59)

and thus the surplus between it and Ut is

WE(εit)−Ut

= w(εit)− b+ Et
{

Ξt+1|t
[
(1− ρ)WIt+1 + (ρ− 1)

(
η(ε̃t+1)W̄Et+1 + (1− η(ε̃t+1))Ut+1

)]}
.

C.2.3 Bargaining Solution

From generalized Nash bargaining,

WIt −Ut =

(
α

1− α

)
JIt (60)

is the Nash sharing rule for incumbent workers where α is the bargaining power of workers, and

WE(εit)−Ut =

(
α

1− α

)
JE(εit) (61)

is the Nash sharing rule for a newly-hired individual with idiosyncratic characteristics εit.

To obtain an expression for the period-t bargained wage of an incumbent, first substitute (58)

in the Nash sharing rule (60), which gives

wIt − b+ (1− ρ)Et
{

Ξt+1|t [WIt+1 −Ut+1]
}

(62)

− (1− ρ)Et
{

Ξt+1|tη(ε̃t+1)
[
W̄Et+1 −Ut+1

]}
=

(
α

1− α

)(
zt − wIt + (1− ρ)EtΞt+1|tJIt+1

)
.

Isolating wIt , we have

wIt = α
(
zt + (1− ρ)EtΞt+1|tJIt+1

)
(63)

+ (1− α)
[
b+ Et

{
Ξt+1|t

[
(1− ρ)WIt+1 − (1− ρ)

(
η(ε̃t+1)W̄Et+1 + (1− η(ε̃t+1))Ut+1

)]}]
.

Similarly,

w(εit) = α
(
zt − γh − εit + (1− ρ)EtΞt+1|tJIt+1

)
(64)
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+ (1− α)
[
b+ Et

{
Ξt+1|t

[
(1− ρ)WIt+1 − (1− ρ)

(
η(ε̃t+1)W̄Et+1 + (1− η(ε̃t+1))Ut+1

)]}]
.

C.3 Equilibrium

A symmetric private-sector equilibrium is made up of endogenous state-contingent processes

{ct, nt, ε̃t, wIt , w(ε̃t)}∞t=0 that satisfy the sequences of conditions: the representative firm’s selection

condition (54), the goods resource constraint (65),

ct = ztnt − stη(ε̃t)

(
γh +

H(ε̃t)

η(ε̃t)

)
, (65)

the aggregate law of motion for employment (66),

nt = (1− ρ)nt−1 + η(ε̃t)st, (66)

and the two conditions that determine the wage processes {wIt , w(ε̃t)}.
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D Proof for Decentralization of Efficiency

The wage at the cutoff point w(ε̃t) is equal to the reservation wage (i.e. the point where WE(ε̃t)−
Ut = 0):

WE(ε̃t)−Ut = w(ε̃t)−b+Et
{

Ξt+1|t
[
(1− ρ)WIt+1 − (1− ρ)

(
η(ε̃t+1)W̄Et+1 + (1− η(ε̃t+1))Ut+1

)]}
= 0

(67)

Thus:

w(ε̃t)− b = Et
{

Ξt+1|t
[
(1− ρ)WIt+1 − (1− ρ)

(
η(ε̃t+1)W̄Et+1 + (1− η(ε̃t+1))Ut+1

)]}
(68)

Now let’s compare the decentralized job creation condition and the efficient one. For this

purpose, we denote the social planner solution with SP and the decentralized solution with D.

γh + ε̃Dt = zt − w(ε̃Dt ) + (1− ρ)Et
{

Ξt+1|t
[
γh + ε̃Dt+1 + w(ε̃Dt+1)− wIt+1

]}
, (69)

and

γh + ε̃SPt = zt − b+ (1− ρ)EtΞt+1|t
{
H(ε̃SPt+1)− ε̃SPt+1η(ε̃SPt+1) + γh + ε̃SPt+1

}
, (70)

For efficiency to be decentralized, we require ε̃Dt = ε̃SPt for all t. In our proof, we will equalize

these two thresholds and check under which condition they are equal. Thus, we denote ε̃t = ε̃Dt =

ε̃SPt and subtract (70) from (69), which gives

w(ε̃t)− b = (1− ρ)Et
{

Ξt+1|t
[
ε̃t+1η(ε̃t+1)−H(ε̃t+1) + w(ε̃t+1)− wIt+1

]}
. (71)

Subtracting this equation from equation (68) gives

(1− ρ)Et
{

Ξt+1|t
[
ε̃t+1η(ε̃t+1)−H(ε̃t+1) + w(ε̃t+1)− wIt+1

]}
(72)

= −(1− ρ)Et
{

Ξt+1|t
[
WIt+1 −

(
η(ε̃t+1)W̄Et+1 + (1− η(ε̃t+1))Ut+1

)]}
. (73)

For convenience, we repeat the present value expressions, which are

WI
t = wIt + Et

{
Ξt+1|t

[
(1− ρ)WIt+1 + ρ

(
η(ε̃t+1)W̄Et+1 + (1− η(ε̃t+1))Ut+1

)]}
, (74)

WE(εit) = w(εit) + Et
{

Ξt+1|t
[
(1− ρ)WIt+1 + ρ

(
η(ε̃t+1)W̄Et+1 + (1− η(ε̃t+1))Ut+1

)]}
, (75)
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and

Ut = b+ Et

{
Ξt+1|t

[
η(ε̃t+1)

(∫ ε̃t+1
−∞ WE(εit+1)f(εit+1)dε

i
t+1

η(ε̃t+1)

)
+ (1− η(ε̃t+1))Ut+1

]}
. (76)

Substituting these value expressions into equation (72), we have

−(1− ρ)Et



Ξt+1|t



wIt+1 + Et

Ξt+2|t+1

 (1− ρ)WIt+2+

ρ
(
η(ε̃t+2)W̄Et+2 + (1− η(ε̃t+2))Ut+2

)


−η(ε̃t+1)


(∫ ε̃t+1
−∞ WE(ε

i
t+1)f(ε

i
t+1)dε

i
t+1

η(ε̃t+1)

)
+{

Ξt+2|t+1

[
(1− ρ)WIt+2 + ρη(ε̃t+2)W̄Et+2 + ρ(1− η(ε̃t+2))Ut+2

]}


−(1− η(ε̃t+1))

b+

Ξt+2|t+1

 η(ε̃t+2)W̄Et+2

+(1− η(ε̃t+2))Ut+2







= (1− ρ)Et

{
Ξt+1|t

[
ε̃t+1η(ε̃t+1)−H(ε̃t+1) + w(ε̃t+1)− wIt+1

]
.
}

(77)

Collecting terms, we obtain

−(1− ρ)Et
{

Ξt+1|t
[
(1− η(ε̃t+1))

{
Ξt+2|t+1(1− ρ)

[
WIt+2 − η(ε̃t+2)W̄Et+2 − (1− η(ε̃t+2)) Ut+2

]}]}
= (1− ρ)EtΞt+1|t

{
ε̃t+1η(ε̃t+1)−H(ε̃t+1) + w(ε̃t+1)− W̄Et+1 − (1− η(ε̃t+1))b

}
. (78)

Finally, replace the term in square brackets in the first line by equation (68), iterated one period

forward:

(1− ρ)Et
{

Ξt+1|t [(1− η(ε̃t+1)) {[w(ε̃t+1)− b]}]
}

= (1− ρ)EtΞt+1|t
{
ε̃t+1η(ε̃t+1)−H(ε̃t+1) + w(ε̃t+1)− W̄Et+1 − (1− η(ε̃t+1))b

}
. (79)

Further simplification yields

(1− ρ)EtΞt+1|t
{
ε̃t+1η(ε̃t+1)−H(ε̃t+1) + η(ε̃t+1)w(ε̃t+1)− W̄Et+1

}
= 0. (80)

Thus, efficiency in the decentralized economy requires

ε̃t+1η(ε̃t+1)−H(ε̃t+1) = W̄Et+1 − η(ε̃t+1)w(ε̃t+1). (81)

Thus, whenever the difference of epsilon between marginal and average worker is the same as the

wage differential, we obtain a decentralization of the social planner solution.

Let’s take our Nash solution (64) and see what the wage difference between the marginal and
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average entrant is. The difference between w(ε̃t+1)− W̄E is

w(ε̃t+1)−
W̄Et+1

η(ε̃t+1)
= α

(
−ε̃t+1 +

H(ε̃t+1)

η(ε̃t+1)

)
. (82)

For the efficiency condition (81) to hold, we require α = 1. When the entire surplus goes to the

worker the existing externality will be internalized.38

38See Faia, Lechthaler, and Merkl (2014) for a similar proof in the context of a different modeling assumption.
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E Long-Run Wage Dispersion

So far, we have written our model in a stationary environment. Productivity shocks are mean-

reverting and can thus be interpreted as deviations from some long-run trend. Under the presence

of long-run productivity growth, our model has to modified in order to guarantee stationarity. To

illustrate this, assume that productivity growth at a constant rate ψ (where ψ is one plus the

period’s net growth rate). In the decentralized economy, profits of an entrant would then be

πEt (εt) = zt − w(εt)− εt − γh + (1− ρ)Et
{

Ξt+1|tπ
I
t+1

}
, (83)

In steady state and by assuming that the wage of entrants is a function of the long-run produc-

tivity, we obtain:

πE (ε) = z − w(ε)− ε− γh + β(1− ρ)
(
ψz − wI (ψz)

)
+ β2(1− ρ)2

(
ψ2z − wI

(
ψ2z

))
+ ..., (84)

When we use the standard assumption that wages comove 1:1 with long-run productivity (as

common in RBC models), we can simplify the equation above to

πE (ε) = z − w(ε)− ε− γh + β(1− ρ)ψ
z − wI(z)

1− βψ (1− ρ)
(85)

It is straightforward to see that introducing long-run productivity growth (ψ > 1) profits would

increase over time and thus the cutoff point would shift every period (which can be obtained by

setting πE (ε̃) = 0). Thus, the model would not be stationary.

Stationarity can be established by a very simple assumption. Besides wages, the idiosyncratic

productivity ε and the fixed component γh also have to trend with aggregate productivity. It is

then straighforward to see that the cutoff remains unaffected. To see this, compare the cutoff point

in period t and in some future period t+ x.

In period t:

ε̃ = z − w(ε̃)− γh + β(1− ρ)ψ
z − wI(z)

1− βψ (1− ρ)
(86)

In period t+ x:

ψxε̃ = ψxz − ψxw(ε̃)− ψxγh + β(1− ρ)ψx
z − wI(z)

1− βψ (1− ρ)
(87)

By dividing equation (87) by ψx, it is straightforwad to see that the cutoff point remains the

same and thus the model becomes stationary.
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How does this help us? In order to guarantuee stationarity, we required two assumptions: i)

idiosyncratic productivity trends with aggregate productivity, ii) wages are a proportional function

of productivity. Let’s assume a general wage mechanism: w (a, εi) = g (z − εi) + h (w (a, εi) b),

where g and h are linear functions. As shown above, z and εi have to trend with long productivity

to obtain stationarity. In addition, we define the fall-back option as a replacement rate (which

generates stationarity). Thus, the wage in period t+ x is w (a, εi) = ψxg(z−εi)
1−h(b) .

Let’s calculate the coefficient of variation cov for wages:

cov (w (a, εi)) =
SD (w (a, εi))

mean (w (a, εi))
=

√∑
i (w (a, εi)−mean (w (a, εi)))

2

mean (w (a, εi))

and use the two conditions from above:

cov (w (εi)) =

√∑
i

(
ψxg(z−εi)
1−h(b) −mean

(
ψxg(z−εi)
1−h(b)

))2
mean

(
ψxg(z−εi)
1−h(b)

)
=

√∑
i (g (z − εi)−mean (g (z − εi)))2

mean (g (z − εi))

Given that g is a linear function, the second line is exactly equal to the coefficient of variation

of aggregate and idiosyncratic productivity:

cov (z − εi) =

√∑
i (z − εi −mean (z − εi))2

mean (z − εi)

Thus, we look at the data through the lens of our model (remaining agnostic about the actual

underlying wage formation mechanism) where the cross-sectional coefficient of variation (i.e. stan-

dard deviation divided by mean) for wages would have to be same as the coefficient of variation for

idiosyncratic productivity. In the dataset of Haefke, Sonntag, and van Rens (2013), the coefficient

of variation for new entrants is on average 0.63 on the quarterly level (from 1989 to 2004) and

remarkably stable over time (as required by our model).
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F Search and Matching

The dynamic job-creation condition in an efficient search and matching model is

κ

(1− α) θ−αt
= zt − b−

καθ1−αt

(1− α) θ−αt
+ (1− ρ)Et

{
βu′(ct+1)

u′(ct)

κ

(1− α) θ−αt+1

}
. (88)

In steady state:

κ (1− β (1− ρ)) θα = (1− α) (z − b)− ακθ (89)

Elasticity of the job-finding rate with respect to productivity:

∂ ln η

∂ ln z
=
∂ ln η

∂θ

∂θ

∂z

∂z

∂ ln z

Intermediate steps:

αθα−1
∂θ

∂z
κ (1− β (1− ρ)) = (1− α)− ακ∂θ

∂z
(90)

∂θ

∂z
=

1− α
α

1

(θα−1κ (1− β (1− ρ)) + κ)
(91)

Thus:

∂ ln η

∂ ln z
= (1− α)

1

θ1−α
θ−α

1− α
α

z

(θα−1 (1− β (1− ρ))κ+ κ)
(92)

=
(1− α)2

α

θ−1z

(θα−1 (1− β (1− ρ)) + 1)

1

κ
(93)

Given our calibration strategy to target a certain η, we can back out the steady state market

tightness θ = η
1

1−α and thereby calculate the required vacancy posting costs to obtain this steady

state, namely:

κ =
(1− α) (z − b)

(1− β (1− ρ)) θα + αθ
(94)

Substituting this into equation (92), we obtain

∂ ln η

∂ ln z
=

(1− α)2

α

θ−1z

(θα−1 (1− β (1− ρ)) + 1)

(1− β (1− ρ)) θα + αθ

(1− α) (z − b)

=
1− α
α

z

z − b
(1− β (1− ρ)) + α

(1− β (1− ρ)) + 1
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G General Equilibrium Model

A social planner in this economy optimally allocates the measure one of individuals in the repre-

sentative household to leisure, unemployment, and employment. There are several representations

of the planning problem available: suppose that ct, lfpt, nt, and ε̃t are the formal objects of choice.

Given the accounting identities of the model, the measure of individuals available for work can thus

be expressed st = lfpt − (1− ρ)nt−1.

The social planner problem is to maximize lifetime expected utility of the representative house-

hold

E0

∞∑
t=0

βt [u(ct)− v (lfpt)] (95)

subject to the sequence of goods resource constraints

ct = ztnt − [lfpt − (1− ρ)nt−1] · η(ε̃t)

(
γh +

H(ε̃t)

η(ε̃t)

)
, (96)

and laws of motion for the employment stock

nt = (1− ρ)nt−1 + η(ε̃t)[lfpt − (1− ρ)nt−1]. (97)

The social planner takes into account the dependence of the finding rate and the average op-

erating cost of a newly-selected worker on the threshold ε̃t, which is made explicit in the notation

here. Recalling that η(ε̃t) ≡
∫
ε≤ε̃t η

′(ε)dε and H(ε̃t) ≡
∫
ε≤ε̃t εη

′(ε)dε, we have H ′(ε̃t) = ε̃tη
′(ε̃t), by

the Fundamental Theorem of Calculus.

Let βtλt be the Lagrange multiplier on the period-t goods resource constraint, and βtµt be the

Lagrange multiplier on the period-t law of motion for employment. The first-order conditions of

the social planner problem with respect to ct, lfpt, nt, and ε̃t are, respectively,

u′(ct)− λt = 0, (98)

−v′(lfpt)− λt
[
γhη(ε̃t) +H(ε̃t)

]
+ µtη(ε̃t) = 0, (99)

λtzt − µt + (1− ρ)βEt
{
µt+1 [1− η(ε̃t+1)] + λt+1

[
γhη(ε̃t+1) +H(ε̃t+1)

]}
= 0, (100)

and

−λtst
[
γhη′(ε̃t) +H ′(ε̃t)

]
+ µtstη

′(ε̃t) = 0. (101)
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Isolating the multiplier µt from (101),

µt =
u′(ct)

[
γhη′(ε̃t) +H ′(ε̃t)

]
η′(ε̃t)

= u′(ct)
[
γh + ε̃t

]
, (102)

in which we have substituted (98). Substituting this expression for µt in (99) gives

v′(lfpt)

u′(ct)
= ε̃tη(ε̃t)−H(ε̃t)

=

∫
ε≤ε̃t

[ε̃t − ε] f(ε)dε, (103)

in which the second line substitutes the definitions of H(ε̃t) and η(ε̃t). The term in square brackets

in the integral is unambiguously positive. Expression (103) is the static efficiency condition that

appears as condition (30) in the main text.

Next, substituting expression (102) for µt (and its time t+ 1 counterpart) in (100), we have

u′(ct)
(
γh + ε̃t

)
zt = u′(ct)zt + (1− ρ)βEt

{
u′(ct+1)

[
γhη(ε̃t+1) +H(ε̃t+1) + (γh + ε̃t+1)(1− η(ε̃t+1))

]}
= u′(ct)zt + (1− ρ)βEt

{
u′(ct+1)

[
H(ε̃t+1)− ε̃t+1η(ε̃t+1) + γh + ε̃t+1

]}
.

(104)

Dividing by u′(ct) gives the selection condition

γh + ε̃t = zt + (1− ρ)Et

{
βu′(ct+1)

u′(ct)

[
H(ε̃t+1)− ε̃t+1η(ε̃t+1) + γh + ε̃t+1

]}
. (105)

45



H Extended Description of Micro-Empirical Evidence on Wages

This Appendix expands the discussion on the empirical micro-evidence discussed in Section 3.7,

which is based on Haefke, Sonntag, and van Rens (2013) who use the CPS. Ideally, we would have

a dataset which allows us to quantify the dispersion of match-specific idiosyncratic productivity

shocks for new jobs in the United States (controlling for worker and establishment/firm fixed

effects). However, to the best of our knowledge, such a dataset is not easily available.

We restrict ourselves to full time workers (i.e. those who worked more than 35 hours per week).

How can we use wages to approximate idiosyncratic productivity? In order for our model to be

stationary in the long run, the dispersion of idiosyncratic training costs (productivity) has to be

proportional to aggregate productivity. In addition, in a decentralized version of the model, in the

long-run wages would have to co-move proportionally with productivity to establish stationarity.39

Thus, we look at the data through the lens of our model (remaining agnostic about the actual

underlying wage formation mechanism) where the cross-sectional coefficient of variation (i.e. stan-

dard deviation divided by mean) for wages would have to be same as the coefficient of variation for

idiosyncratic productivity. In the dataset of Haefke, Sonntag, and van Rens (2013), the coefficient

of variation for new entrants is on average 0.63 on the quarterly level (from 1989 to 2004) and fairly

stable over time (as required by our model).

Note that we consider the coefficient of variation of entrant wages to be an extreme upper bound

for match-specific idiosyncratic productivity because it does not control for all sorts of observable

and unobservable characteristics (in particular, not for establishment and worker fixed effects),

which are abstracted from in our model. Card, Heining and Kline (2013, see Figure IV) show

with a rich employer-employee linked dataset for Germany that adding industry, occupation and

establishment fixed effects reduces the dispersion of wages substantially, namely by roughly one

third. This brings us in a similar order of magnitude as suggested by the EOPP.

Interestingly, the coefficient of variation in the wage data is also roughly 0.6 on the monthly

level. Given that establishment fixed effects are not included, we also proceed with a coefficient of

variation of 0.4 when we calibrate to the monthly level.

39More generally, conventional business cycle and growth models require that productivity and wages comove one
to one in the long run in order to make labor input (employment) stationary.
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