
Firm Risk and Leverage-Based Business Cycles

Sanjay K. Chugh ∗

Boston College

Kiel Institute for the World Economy

First Draft: October 2009

This Draft: August 11, 2015

Abstract

I characterize cyclical fluctuations in the cross-sectional dispersion of firm-level productivity.

Using the micro-estimated dispersion, or “risk,” stochastic process as an input to a baseline

small-scale financial accelerator model, I assess how well the model reproduces cyclical move-

ments in both real and financial conditions of the economy. In the model, risk shocks calibrated

to micro data lead to empirically-relevant steady-state leverage, a financial measure typically

thought to be closely associated with real activity. In terms of aggregate quantities, pure risk

shocks in the small-scale general equilibrium model account for a notable share of GDP fluctua-

tions — roughly 5%. The volatility of the risk process I measure using micro data is, remarkably,

not very different compared to recent estimates of risk shocks based on medium- or large-scale

models using macroeconomic data. These seemingly contrasting starting points for measuring

risk shocks do not imply any dichotomy at the core of a popular class of DSGE financial fric-

tions models. Rather, it is the particular transmission channels in financial-frictions models —

whether small scale or medium scale — that are critical for aggregate quantity fluctuations to

arise based on risk shocks.
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1 Introduction

There are two distinct components of this paper that contribute to the literature on macro-financial

accelerator models. The first is an estimation of time-series volatility of “risk shocks” using microe-

conomic data, and the second is an application of the empirical results to a well-known macroe-

conomic framework. The notion of “risk” studied is the standard deviation in any given time

period of firm-level idiosyncratic productivity. “Risk shocks” are thus exogenous time variations in

this cross-sectional dispersion. On the estimation front, the time-series volatility of idiosyncratic

productivity risk is consistent with or a bit larger than other existing microeconomic estimates,

and is on the same order of magnitude compared to recent macroeconomic estimates. Moreover,

average productivity and the cross-sectional standard deviation of idiosyncratic productivity are

highly countercyclical with respect to each other.

The estimation result leads to the second component of the study, which is a quantitative

application to a small-scale general equilibrium financial accelerator framework. Two main results

emerge here. First, the endogenous steady-state leverage ratio in the model nearly matches that

in the data (0.67 vs. 0.56, respectively), even though the calibration was not designed to do so.

Second, using the estimated time-series volatility of cross-sectional risk as a driving force of the

model, risk shocks alone generate volatility in standard macro aggregates, such as GDP. Variance

decomposition shows that nearly 5% of GDP volatility is accounted for by risk shocks, and the rest

is driven by total factor productivity. Given that these are the only two shocks in a small-scale

model that, by changing just two parameters, nests the simple real business cycle model, 5% of

GDP volatility accounted for by risk shocks is remarkable. Risk shocks also generate fluctuations in

financial aggregates such as leverage and bankruptcy — about one-third of the variance in financial

aggregates in the model is accounted for by risk shocks.

The empirical side of this paper itself consists of two different parts. First, I characterize

fluctuations in firm-level dispersion using U.S. micro data for the period 1973-1988. Specifically,

based on data constructed by Cooper and Haltiwanger (2006), I estimate the mean, the persistence,

and the time variation in the cross-sectional dispersion of firm-level productivity. The estimates

for the mean and persistence parameters are broadly similar to those in existing literature.

The estimated time variation, which is identified in this paper as risk fluctuations, can be

compared to both existing microeconomic evidence and to recent macroeconomic estimates. The

measure of firm risk I base on Cooper and Haltiwanger (2006) is strongly countercyclical with

respect to GDP, consistent with the micro-level evidence of Bloom, Floetotto, Jaimovich, Saportka-

Ekstein, and Terry (2012) — henceforth, BFJST (2012) — and Bachmann and Bayer (2013). In

a microeconomic sense, firm risk is quite volatile over the business cycle: measured by the ratio of

the standard deviation of innovations in risk to average risk, the volatility of annual firm risk is 17
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percent. By this metric, volatility of firm risk is similar to that measured by BFJST (2012), but

is substantially larger than that measured by Bachmann and Bayer (2013). Comparisons must be

made with caution, because the U.S. micro data I examine are different from the U.S. micro data

examined by BFJST (2012), which in turn are different from the German micro data examined

by Bachmann and Bayer (2013). Nonetheless, the evidence I present complements these and other

emerging empirical measures of firm-level risk. The estimated risk shock process is used as an input

to the theoretical model.

Before proceeding to theory, though, the second empirical aspect is an extension of the leverage

measure provided in Masulis (1988) to cover the time period 1973-1988, which has two advantages.1

One advantage is to allow for clean comparability with the period over which the risk shock process

is estimated. The other is that the Masulis-based leverage series also permits some comparability

with a component of the Christiano, Motto, and Rostagno (2014) macroeconomic estimation, about

which more is described soon.2

In terms of theory, I deploy the estimated risk shock process in the Carlstrom and Fuerst (1997)

agency-cost “investment model.” A closely-related existing study is Dorofeenko, Lee, and Salyer

(2008) — henceforth, DLS — which also analyzes the importance of risk shocks in the Carlstrom

and Fuerst (1997) model. The marginal contribution relative to DLS is the estimation of risk

shock parameters rather than assumptions about them. The crucial risk-shock volatility parameter

I estimate is an order of magnitude larger than their assumed parameter. Not surprisingly, the

quantitative importance of risk shocks alone in generating fluctuations turns out be much larger in

my results compared with the results in DLS.

Comparing my results to those of the prominent recent study by Christiano, Motto, and Ros-

tagno (2014) — henceforth, CMR — my estimated volatility of risk is of the same order of mag-

nitude. In a medium-scale model, CMR estimate, among a host of other parameters, a risk shock

process based on macroeconomic data.4 In contrast, my estimated risk shock process is based on

microeconomic data. The details of my estimation are described in Section 2 and Section 5; but, to

1I thank Ana Lariau for her tenacity in locating the data in the IRS Corporate Income Tax Returns database in

order to be able to extend the Masulis (1988) series. The leverage data provided in Masulis (1998) ended in 1984.
2Leverage, defined as the debt-to-asset ratio, is often thought to play a central role in connecting financial and real

activity. In principle, model-based leverage fluctuations have the potential to drive, or at least be associated with, real

fluctuations. Such “leverage-based business cycles” could arise through fluctuations in firms’ balance sheet conditions

that are induced by risk shocks. The transmission channel that the model emphasizes and tests is thus explicitly

financial: if there were no agency costs in financial markets, there is no channel by which risk shocks could affect

real fluctuations at all.3 This aspect of the model is similar to the qualitative business cycle model of Williamson

(1987) and the quantitative models of Dorofeenko, Lee, and Salyer (2008), Christiano, Motto, and Rostagno (2014),

and others.
4The CMR framework’s starting point is the sticky-price financial accelerator model of Bernanke, Gertler, and

Gilchrist (1999).
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compare the results in a macro setting, my estimated volatility of the crucial parameter for cross-

sectional risk is 50% of the most comparable estimate in CMR. This result is remarkable given the

completely different approaches CMR and I use in estimating this crucial parameter.

Taken together, my results (which impose microeconomic discipline), the results of DLS, and

the results of CMR (which impose macroeconomic discipline) may raise an issue about the “proper”

way to parameterize risk shocks in agency-cost accelerator models — use of micro data vs. macro

data. That is, the contrasting starting points for empirically measuring risk shocks seem to raise a

tension between a micro-calibration approach and a macro-calibration approach. This tension does

not have to be portrayed in a negative light. Rather, it indicates that further research is required.

Finally, two points regarding modeling approach are in order. First, as should be clear from the

discussion so far, the idea of “risk shocks” in this paper is variations over time in the cross-sectional

standard deviation of firm-level productivity, holding constant average productivity. This is the

same notion of idiosyncratic “second-moment shocks” that BFJST (2012), Bachmann and Bayer

(2013), CMR, and DLS study. However, it is distinct from an aggregate notion of “second-moment

shocks” emphasized by Justiniano and Primiceri (2008), Fernández-Villaverde and Rubio-Ramirez

(2007), Fernández-Villaverde, Guerrón-Quintana, Rubio-Ramirez, and Uribe (2011), Gourio (2013),

Basu and Bundick (2011), and others, in which the standard deviation of the innovations affecting

aggregate driving processes such as productivity, real interest rates, and monetary disturbances vary

over time. Crucial in this latter group of studies is that they are all representative-agent economies,

so there is no meaningful concept of cross-sectional dispersion. Focusing on the cross section is the

main idea in BFJST (2012), Bachmann and Bayer (2013), CMR, DLS, and this paper. Second,

echoing the well-articulated argument in Fernández-Villaverde, Guerrón-Quintana, Rubio-Ramirez,

and Uribe (2011), I treat cross-sectional risk fluctuations as exogenous. How to endogenize such

fluctuations is an interesting question, but because the empirical evidence in this area is so new and

fast moving, I adopt the view that this is not the first natural question to consider. Instead, I focus

on the consequences of such fluctuations as mediated through agency-cost frictions, which focuses

attention on the transmission mechanism of risk shocks. Regarding terminology, I use the terms

“risk shocks,” “firm-level risk,” “second-moment shocks,” and “dispersion shocks” interchangeably.

The rest of the paper is organized as follows. Section 2 presents new empirical evidence on firm-

level risk and its business cycle properties. Section 3 briefly presents the aggregate leverage data

used as a financial point of comparison for the model’s results. Section 4 presents the baseline model,

in which shocks to average productivity and risk shocks are independent exogenous processes.

Section 5 describes (based on the results from Section 2) how the crucial risk-shock volatility

parameter is determined and then presents quantitative results, which are supplemented by further

analysis in the Appendix. Section 6 concludes.
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2 Risk Fluctuations

The main goal of this section is to document the properties of business cycle fluctuations in firm-

level dispersion. The analysis is based on a balanced panel, constructed by Cooper and Haltiwanger

(2006), from the Longitudinal Research Database (LRD). The data are annual observations of plant-

level measures such as revenue, materials and labor costs, and investment at approximately 7,000

large U.S. manufacturing plants over the period 1974-1988. The starting point for the analysis is

Cooper and Haltiwanger’s (2006) measures of plant-level profitability residuals from this panel.5

Briefly, Cooper and Haltiwanger (2006) compute for each plant i in year t a residual Ait that

reconciles exactly the observations of plant i’s profits and capital stock in year t when described by

a profit function that depends only on the capital stock.6 The year-specific aggregate residual zt

is computed as the mean of Ait across firms in year t. Plant i’s profit function in year t is viewed

as being shifted by both the aggregate shock zt and an idiosyncratic shock ωit ≡ Ait/zt. In each

year, there is thus a cross-sectional distribution of ωit. Denote by σωt the cross-sectional standard

deviation in year t of the idiosyncratic component of profitability ωit. I make three identifying

assumptions regarding ωit and thus the interpretation of its cross-sectional dispersion σωt . These

assumptions align the analysis of the data with the model into which they will be an input.

First, although σωt measures cross-firm dispersion, I treat it as measuring true cross-firm risk.7

The two concepts are identical only if each firm’s idiosyncratic component ωit has zero persistence.

Cooper and Haltiwanger (2006, p. 622-623) estimate an AR(1) coefficient of the idiosyncratic

component of 0.885, hence ωit is actually quite persistent (recall the data are annual). However,

it is computationally difficult to handle persistent idiosyncratic shocks in the theoretical model

developed below, so the model assumes iid idiosyncratic shocks.8 To align the empirical analysis

of σωt with its role in the model, I thus proceed by assuming zero idiosyncratic persistence.

There are both advantages and potential drawbacks of this approach. An advantage is that

the dispersion of firm-level outcomes in the model are thus calibrated to the data. A potential

drawback is that σω is thus an overestimate of firm-level risk, which, when input as an exogenous

process to the model, in principle gives risk shocks the largest possible role in driving the model’s

fluctuations. As the quantitative results in Section 5 show, risk shocks alone turn out to drive

about 5% of aggregate fluctuations.

The second identifying assumption is that firm-level profitability shocks are true productivity

shocks. Because plant-level price deflators are unavailable in the dataset, it is impossible to dis-

5I thank John Haltiwanger for providing their aggregative data on profitability residuals.
6The Appendix in Cooper and Haltiwanger (2006) describes in detail the construction of the data and the residuals.
7Which is the basis for my interchangeable references to firm-level “dispersion” and firm-level “risk.”
8To my knowledge, no DSGE models based on the agency-cost framework have been solved assuming persistent

idiosyncratic shocks.
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tinguish cost shocks from revenue shocks, so the ωit residuals mix both supply and demand shifts

(hence the term “profitability” shocks).9 As an identifying assumption for the theoretical model, I

simply interpret these profitability shocks as true productivity shocks. Thus, one can think of this

aspect of the data analysis as also being conducted strictly through the lens of the model.

Third, when deploying the evidence documented here in the model, I identify “plants” as

“firms,” abstracting from the fact that a non-negligible share of plant-level output in the LRD

represents output of multi-plant firms. With these three identifying assumptions, I characterize

the business cycle behavior of both zt and of σωt , aspects of the data not studied by Cooper and

Haltiwanger (2006).

2.1 Productivity Risk

I first compute the cross-sectional coefficient of variation of productivity (profitability) for each of

the 15 years of the sample. Cross-sectional coefficients of variation are used because the residually-

computed aggregate mean level of productivity (zt) is not unity in the data, but it is normalized

to unity in the model below. The time-averaged mean of the cross-sectional coefficient of variation

is 0.156, hence I normalize long-run dispersion in the model to σ̄ω = 0.156. Given the discussion

above, true long-run “risk” is smaller than σ̄ω = 0.156. Specifically, taking a stationary AR(1) view

of idiosyncratic productivity and using the Cooper and Haltiwanger (2006, p. 622-623) estimate of

idiosyncratic persistence of 0.885, true long-run firm-level risk is
√

1− 0.8852σ̄ω = 0.0726. Aligning

the empirical analysis with the model thus overstates firm-level risk by roughly a factor of two.

Figure 1 plots the time series σωt , which suggests a modest upward trend in dispersion. Figure 2

displays the HP-filtered components of σωt and GDP over the period 1974-1988. A clear negative

cyclical correlation between the two series is apparent — the contemporaneous correlation between

the two series is -0.83, hence expansions are associated with a decrease in dispersion of firms’

idiosyncratic productivity, and recessions are associated with an increase in dispersion of firms’

idiosyncratic productivity. Strongly countercyclical firm-level risk is also a robust finding in the

micro evidence of Bachmann and Bayer (2013) — hereafter, BB (2013) — and BFJST (2012). In

terms of volatility, the standard deviation of the cyclical component of σωt is 3.15 percent over the

sample period. With an innocuous abuse of notation, I hereafter use σωt to denote the cyclical

component of cross-sectional dispersion.

In the model presented in Section 4, I suppose that σωt follows the exogenous AR(1)

lnσωt+1 = (1− ρσω) ln σ̄ω + ρσω lnσωt + εσ
ω

t+1, (1)

with εσ
ω ∼ N(0, σσω). Given σ̄ω = 0.156, the point estimate (using OLS) of the AR(1) parameter

9More precisely, they are available only at five-year intervals, too low a frequency for business cycle analysis.
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is ρσω = 0.48, with a t-statistic of 1.93. With this estimate of ρσω and the standard deviation of

σωt of 3.15 percent, the standard deviation of the (annual) innovations to the cross-firm dispersion

process can be computed to be 0.0276. This implies a coefficient of variation (with respect to the

mean dispersion σ̄ω = 0.156) of 17.7 percent, which can be directly compared to the empirical

evidence reported by BB (2013) and BFJST (2012). Computed in a variety of ways, BB (2013)

find a coefficient of variation of innovations to firm-level productivity for their entire sample of

German firms between two and three percent. However, because the Cooper and Haltiwanger

(2006) analysis is of large manufacturing plants, the most comparable result in BB (2013) is their

finding for the largest (ranked by employment) five percent of firms in their sample. For this sample,

BB (2013) find a coefficient of variation of firm-level innovations of 5.5 percent (see their Table 8).

The 17.7 percent coefficient of variation of plant-level innovations in the Cooper and Haltiwanger

(2006) sample is thus substantially larger than the largest firms in BB (2013)’s sample. However,

this degree of volatility of firm risk lines up much better with the evidence of BFJST (2012), who

document using a variety of cross-sectional measures that dispersion of firm outcomes rises very

sharply during recessions.

2.2 Average Productivity

For further consistency in the way the firm-level data are used as an input to the model, I also

characterize the time-series behavior of zt, the average productivity (profitability) residual. In the

model, this measure will correspond conceptually to the standard notion of aggregate productivity

(i.e., the first moment of the productivity distribution). Figures 3 and 4 display the actual series,

its HP trend, and the cyclical component of average productivity.10

The cyclical component of zt is highly correlated with the cyclical component of GDP, as

Figure 4 shows — the contemporaneous correlation between the two is 0.87. The volatility of the

cyclical component of zt is 1.26 percent (at an annual horizon). Again with an innocuous abuse of

notation, I hereafter use zt to denote the cyclical component of average productivity.

In the model presented below, I suppose that zt follows the exogenous AR(1)

ln zt+1 = ρz ln zt + εzt+1, (2)

with εz ∼ N(0, σz). Estimation gives a point estimate ρz = 0.48, with a t-statistic of 1.84.11 With

this estimate of ρz and the standard deviation of zt of 1.26 percent, the standard deviation of the

(annual) innovations to the average productivity process can be computed to be 0.0111. Finally,

10As noted above, long-run average productivity is normalized to unity in the model, so the vertical scale in Figure 3

is arbitrary. In the empirical analysis of Cooper and Haltiwanger (2006), mean productivity was not normalized.
11This differs from Cooper and Haltiwanger’s (2006, p. 623) estimate of the persistence of mean productivity

because they do not detrend; the AR(1) coefficient of the unfiltered zt series is 0.76.
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the cyclical correlation between average productivity and the dispersion of productivity (i.e., the

concept of firm risk) is -0.97; this extremely strong negative correlation is part of the motivation

of the “bundled-shock” model extension considered in Appendix B.

In the model developed in Section 4, I pursue annualizations of a quarterly calibration be-

cause the leverage evidence documented in Section 3 is annual. Because the evidence presented

in this section is from annual data, I use persistence parameters of ρσω = 0.480.25 = 0.83 and

ρz = 0.480.25 = 0.83, which assumes smoothness in the processes during the year. How this infer-

ence of quarterly persistence from annual estimates affects the model calibration of the innovation

parameters σσω and σz is deferred to Section 5.2.

One final note is helpful: a concern may be the slight downward trend in “productivity” in

the manufacturing sector during 1974-1988. Keep in mind, however, that (apart from the sharp

recessions during this period) what is being measured is actually profitability residuals. If the

relative prices of the inputs, capital and labor, trended during this period, this would show up as a

trend in profitability.12 As the results above show, the final AR(1) stochastic process that describes

average profitability/productivity is very similar to a simple RBC model’s average productivity

process. So, if one prefers, one can think of the AR(1) process as an illustrative, off-the-shelf RBC-

style process, the precise parameter settings for which are not crucial to the main conclusions of

the paper.

3 Leverage Data

Table 1 displays aggregate leverage data for the manufacturing sector. The data through 1984 were

obtained from Masulis (1988) and extended to include the years 1985, 1986, 1987, and 1988 so that

it covers the time period used in estimating the risk shock process. As noted in the Introduction,

CMR’s estimation is partly based on the Masulis (1988) data.

As also noted in the Introduction, the risk-shock calibration of Section 2 turns out to endoge-

nously match quite well the time-series average of empirical leverage as provided in Masulis (1988)

and extended to include the years 1985 — 1988 so that it covers the time period used in estimating

the risk shock process. The average leverage ratio during 1973-1988 was 0.56, which is quite close

to the 0.67 in the calibrated model of Section 5, even though leverage was not a calibration target.

12I thank Larry Ball and Chris Carroll for raising these points.
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4 Model

As described in the Introduction, the model is based on the well-known agency-cost frameworks

used by Carlstrom and Fuerst (1997, 1998).13 The model is most directly based on the “invest-

ment model” of Carlstrom and Fuerst (1997), in which it is only capital-goods producers that are

subject to financing constraints, all prices are flexible, and there are no other rigidities or frictions

whatsoever. This provides the cleanest model to evaluate the role of empirically-relevant shocks to

firm risk, so I refer to the Carlstrom and Fuerst (1997) — henceforth, CF — investment model as

“the” underlying model, recognizing that it is meant to capture an entire literature of work. In a

study with a very similar motivation, DLS also study the role of risk shocks in the CF model; DLS

parameterize the risk process in an illustrative way, rather than calibrating it to micro data as I

do.14

As an aid to the ensuing description of the model, Figure 5 illustrates the timing of events in the

model. Because the model is virtually identical to the CF investment model, with only a couple of

modifications made to align the model with the data analysis in Sections 2 and 3, readers familiar

with the CF model may prefer to skip to the analysis beginning in Section 5.

4.1 Households

A representative household maximizes expected lifetime discounted utility over streams of con-

sumption ct and labor nt,

E0

∞∑
t=0

βt [u(ct) + v(nt)] , (3)

subject to the sequence of flow budget constraints

ct + qtkht+1 = wtnt + kht [rt + qt(1− δ)] + Πt. (4)

The functions u(.) and v(.) are standard strictly-increasing and strictly-concave subutility functions

over consumption and labor, respectively. The rest of the notation is as follows. The household’s

subjective discount factor is β ∈ (0, 1), kht denotes the household’s capital holdings at the start of

period t, wt is the real wage that is taken as given, rt is the market rental rate on capital that is also

taken as given, δ is the per-period depreciation rate of capital, and qt denotes the price (which is

endogenous in equilibrium) of one unit of the capital good in terms of consumption goods. The price

13Bernanke, Gertler, and Gilchrist (1999) recasts the Carlstrom and Fuerst (1997) framework to allow for nominal

rigidities and monetary policy.
14In a previous version of this paper, I used the risk shock estimates from Section 2 in the Carlstrom and Fuerst

(1998) output model. However, because virtually all of the agency-cost-based financial frictions literature uses as its

starting point the investment model, the results of deploying the micro-estimated risk shocks in the investment model

are easier to compare to existing literature and are more informative for future research.
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qt is the model’s notion of Tobin’s q. The household also receives aggregate dividend payments Πt

from capital-producing firms as lump-sum income, the determination of which is described below.15

Emerging from household optimization is a completely standard labor supply condition

−v
′(nt)

u′(ct)
= wt, (5)

and a capital Euler condition

qtu
′(ct) = βEt

{
u′(ct+1) [rt+1 + qt+1(1− δ)]

}
, (6)

which follow as usual from the household’s period-t first-order conditions with respect to ct, nt,

and kht+1. The one-period-ahead stochastic discount factor is defined as Ξt+1|t = βu′(ct+1)/u′(ct),

with which both capital-producing entrepreneurs and consumption-producing firms, in equilibrium,

discount profit flows.

4.2 Production

There is a mass of identical representative firms. Within a representative firm, there is a mass η of

“entrepreneurs” that produce capital goods and a unit mass of Walrasian consumption good produc-

ers. Only the entrepreneurial side of the representative firm can operate the investment-production

(capital-production) technology. We will refer to the “entrepreneurs” interchangeably as “capital

producers,” or, on occasion (because there is a large mass of them), “capital-producing firms.”

The capital producers are heterogenous in their productivity and operate semi-autonomously, with

the objectives of the representative firm (and therefore, ultimately, the representative household)

in mind. An entrepreneur i produces capital using a linear technology, the details of which are

described next.

4.2.1 “Entrepreneurial” Capital-Producing Firms

Each period, entrepreneur i’s idiosyncratic productivity is a draw from a distribution with cumu-

lative distribution function Φ(ω), which has a constant mean E(ωt) = 1, a time-varying standard

deviation σωt , and associated density function φ(ω), all of which are identical across entrepreneurs.

As in DLS, the time-varying volatility σωt is the key innovation in the model compared to CF.

Given the constant first and time-varying second moments E(ωt) = 1 and σωt common across

15I could also introduce two other assets in the budget constraint. First, shares could be included in order to

directly price streams of dividends paid by capital-producing firms to households. Second, an intra-period bond could

be explicitly introduced, which would be the source of funding for the capital-producing firms — in the terminology

used by CF, this source of funds is “capital mutual funds” (which is shown in the acronym CMR in the timeline

in Figure 5); anticipating equilibrium, the gross return on the intra-period bond would be Rt = 1. Thus, because

neither of these extra details are necessary for the main results, they are omitted from the budget constraint.
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capital-producing firms, idiosyncratic productivity for a given firm is i.i.d. over time, an assump-

tion made for tractability.16

As noted above, in aggregate, capital-producing firms are owned by households, and the ob-

jective of capital producers is to maximize the expected present discounted value of dividends

remitted to households. Denote by Πit the dividend payment made by capital-producer i to house-

holds. For descriptive convenience, I decompose Πit into a “non-retained earnings” component Πe
it

and a retained earnings — or, in terminology used in Section 4.2.3 below, an asset-evolution —

component.

Because they are ultimately owned by households, capital producers apply the representative

household’s stochastic discount factor (the one-period-ahead discount factor is Ξt+1|t, as defined

above) to their intertemporal optimization problem. However, capital producers are also assumed

to be “more impatient” than households by the factor γ < 1, which can be thought of as a

principal-agent problem, or, more broadly, as semi-autonomy, that prevents perfect alignment of

the capital producers’ managerial objectives with the overall large firms’ (in turn, households’)

intertemporal preferences.17 At a technical level, γ < 1 ensures that capital producers cannot

accumulate enough assets to become self-financing, which would render irrelevant the financial

frictions described below.18 This device for avoiding self-financing outcomes is common in models

of financial frictions.

16The assumption of zero persistence of the idiosyncratic component of a firm’s productivity was noted in Section 2,

and it greatly simplifies the computation of the model because the firm sector essentially can be analyzed as a

representative agent. This point is discussed further below when I come to the aggregation of the model. This

simplification still allows me to illustrate the main point of the model, which is that variations in cross-sectional

productivity dispersion can lead to fluctuations in aggregate financial measures and economic activity. In addition to

greatly reducing the computational burden, the assumption of zero persistence in idiosyncratic shocks also retains the

simplicity of the CF and Bernanke and Gertler (1989) contracting specifications. If persistent shocks were allowed,

it is not clear that the simple debt contracts of these models could not be improved upon by the contracting parties

by, say, multi-period contracts. Sidestepping this issue is yet another reason to assume no persistence in realized

idiosyncratic productivity. Note, however, that assuming persistence in shocks to σωt , as the empirical results in

Section 2 indicate, does not pose any of these problems; indeed, shocks to σωt really are aggregate shocks.
17A prime example is that when Disney acquired Pixar in 2006, one of the conditions was that Pixar would operate

autonomously of Disney and Disney Animation. It’s turned out magically since then — Pixar has produced smash

hit after smash hit, Pixar continues to maintain its own email system, and, to date, not one employee has been

“encouraged” by Disney to shift to Walt Disney World in Florida or end a telephone call with “Have a magical day.”

(Source: http://www.slideshare.net/AdwitiyaTiwari/disney-pixar-ma). Yet another, more recent, example is Apple’s

2014 acquisition of Beats Music and Beats Electronics — Beats operates autonomously of Apple.
18The quantitative results of this paper are virtually the same if either the “dying-on-the-corner” assumption (in

which capital producers would simply discount by γβ ∀t, rather than by γΞt+1|t) or the equilibrium risk-neutrality

(in which each capital producer has its own “linear utility function”) assumption were instead used. For the sake of

parsimony, I have not included the results from these variants of the model.
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4.2.2 Capital-Producers Financing and Contractual Arrangement

This section describes the financial arrangements of the model. To facilitate comparison of general

equilibrium with optimization by capital producers, the following intuitive description of state

variables is helpful. From a general equilibrium perspective, financial outcomes are contingent on

the exogenous aggregate state (zt, E(ωt), σ
ω
t ) of the economy.19

From capital-producing firm i’s partial equilibrium perspective, financial outcomes also take as

given net worth nwit and Tobin’s qt, each of which is determined in other markets (which in turn

are contingent on the aggregate state (zt, E(ωt), σ
ω
t )). As in CF and as shown in Figure 5, every

capital producer is assumed to commit to using all of its inputs for production after observing the

aggregate exogenous state (zt, E(ωt), σ
ω
t ), but before observing its idiosyncratic realization ωit.

Part of the financing of the capital producer’s costs comes from its own accumulated net worth,

which is held primarily in the form of capital. The capital that each capital producer accumulates

is rented on spot markets to Walrasian consumption-goods producing firms, just like households

rent their capital on spot markets. Entrepreneur i’s capital holdings at the start of period t are keit.

However, the entrepreneur’s internal funds (which I refer to interchangeably as its net worth

or its equity) are insufficient to cover all input costs. To finance the remainder, a capital producer

must borrow short-term — formally, intraperiod. A capital producer requires external financing

because of the “semi-autonomy” assumption that it is more impatient than households, as described

above.20 By acquiring external funds, the capital producer is able to leverage its net worth in period

t,

nwit = keit [rt + qt(1− δ)] + et, (7)

into production of investment goods iit. Total borrowing by the generic capital-producing firm is

thus iit− nwit. The component et of net worth in expression (7) is a small amount of “endowment

income” that each capital producer receives to ensure its continued operations in the event that it

was unable to repay its debt and thus had to undergo costly reorganization in the previous period.

In closing the model, this endowment is absorbed into the payout Πit the capital producer pays to

its owners, which is the representative household. The payout Πit is thus interpreted as net of the

endowment et.
21

19Although E(ωt) = 1 ∀t, it is maintained as a state variable for the sake of generality.
20As noted above, this is a standard assumption in this class of models and avoids the self-financing outcome. See,

for example, Carlstrom and Fuerst (1997, 1998) and Bernanke, Gertler, and Gilchrist (1999).
21Thus, et can loosely be interpreted as a lump-sum transfer of “startup funds” provided by households to capital-

producing firms, as in Gertler and Karadi (2011). By allowing a “firm’s” operations to continue in the event of

bankruptcy, the assumption of a startup fund brings great analytical tractability to the model. Thus, the “costs of

bankruptcy” in the model are more properly interpreted as “costs of reorganization” without any disruption of its

output-producing activities (i.e., bringing in new management to oversee ongoing operations).
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I describe only briefly the outcome of the contracting arrangement between borrowers (capital-

producing firms) and lenders (households) because it is standard in this class of models.22 The

financial contract is a debt contract, which is fully characterized by a reorganization threshold

ω̄t and a loan size iit − nwit. A firm must be “reorganized” if its realized productivity ωit is

below the contractually specified threshold ω̄t. Below this endogenous threshold, capital-producer

i does not have enough resources to fully repay its loan. In that case, the capital producer must

undergo reorganization and receives nothing, while the lender must pay reorganization costs that

are proportional to the total output of the firm and receives, net of these reorganization costs, all of

the output of the entrepreneur. Note again that all capital producers, regardless of whether or not

they end up requiring reorganization, do produce capital up to their full (idiosyncratic) capacity.

Define by f(ω̄t) the expected share of idiosyncratic output ωitiit the borrower (the capital pro-

ducer) keeps after repaying the loan, and by g(ω̄t) the expected share received by the lender.23

These expectations are conditional on the realization of the time-t exogenous aggregate state

(zt, E(ωt), σ
ω
t ), but before revelation of a firm’s idiosyncratic productivity ωit. The contractually-

specified project size is characterized by a zero-profit condition on the part of lenders,

iit =
nwit

1− qtg(ω̄t)
, (8)

and the contractually-specified reorganization threshold is characterized by

qtf(ω̄t)

1− qtg(ω̄t)
= −f

′(ω̄t)

g′(ω̄t)
, (9)

in which Tobin’s qt > 1 arises solely from the external financing needs of the entrepeneur.24

The loan size iit−nwit is firm-specific. However, the reorganization threshold ω̄t is not because

idiosyncratic productivity has zero persistence. Condition (9) thus implies that the Tobin qt is also

identical across firms, which is the key result that makes aggregation in the model simple, which

22In the context of general equilibrium settings, familiar expositions appear in Carlstrom and Fuerst (1997, 1998),

Bernanke, Gertler, and Gilchrist (1999), and, in an application to labor search and matching, Chugh (2013). In

partial-equilibrium settings, analysis of this type of contractual arrangement traces back to Townsend (1979), Gale

and Hellwig (1985), and Williamson (1987).
23Formally, f(ω̄t) ≡

∫∞
ω̄t

(ωi − ω̄t)φ(ωi)dωi =
∫∞
ω̄t
ωiφ(ωi)dωi − [1−Φ(ω̄t)]ω̄t is the share received by the firm, and

g(ω̄t) ≡
∫ ω̄t

0
(ωi − µ)φ(ωi)dωi +

∫∞
ω̄t
ω̄tφ(ωi)dωi =

∫ ω̄t

0
ωiφ(ωi)dωi + [1− Φ(ω̄t)]ω̄t − µΦ(ω̄t) is the share received by

the lender.
24The background assumptions of the zero profit condition are that lending is a perfectly competitive activity

and entry into lending is costless (which is simply a summary of CF’s “capital mutual funds” which they, and thus

Figure 5, denote as CMR.) Formally, the two conditions characterizing the optimal contract result from maximizing

(the entrepreneur’s share of) the return on the financial contract (because the entrepreneur, if it remains solvent, is

the residual claimant on output), qtf(ω̄t)iit, subject to the zero profit condition of the lender, qtg(ω̄t)iit = iit−nwit.
Define λt as the shadow value on the zero-profit constraint.
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in turn justifies omission of entrepreneur-i indexes for the variables q and ω̄. Finally, the contract

multiplier λt that is associated with conditions (8) and (9) is

λt =
qtf(ω̄t)

1− qtg(ω̄t)
. (10)

An interesting point regarding λt is quantified in Section 5.

4.2.3 Asset Evolution of Capital Producers

Capital-producers take as given contractual outcomes when maximizing profits. Regarding their

dynamic aspect, capital producer i begins period t with assets keit, whose beginning-of-period-t

market value determines its net worth nwit, as shown in (7). The entrepreneur borrows iit − nwit
against the value of these assets, and it expects to keep qtf(ωt)iit after repaying its loan.25 Of these

“excess” resources, the entrepreneur can either accumulate assets or make payments to households.

That is,

Πe
it + qtk

e
it+1 = qtf(ω̄t)iit, (11)

which highlights that qtk
e
it+1 can be thought of as retained earnings, as mentioned in Section 4.2.1.

Substituting the contractually-specified project size, i = nw
1−qg(ω̄) , this can be re-written as

Πe
it + qtk

e
it+1 =

qtf(ω̄t)

1− qtg(ω̄t)
nwit. (12)

Further substituting the definition of net worth from (7), the entrepreneur’s asset evolution is

described by

Πe
it + qtk

e
it+1 =

qtf(ω̄t)

1− qtg(ω̄t)
(keit [rt + qt(1− δ)] + et) . (13)

4.2.4 Walrasian Producers...

The representative Walrasian firm hires on spot markets existing capital goods kit and labor

nit to produce the final consumption good via the constant-returns-to-scale aggregate technol-

ogy ztF (kit, nit). The total cost of Walrasian production is wtnit + rtkit, hence a Walrasian firm’s

period-t profits are ztF (kit, nit)− wtnit − rtkit.
25This is because, as noted in footnote 24, the entrepreneur keeps the entire (expected) surplus from the contractual

arrangement. Hence, in expectation, the entrepreneur is left with qtf(ωt)iit after the sequence of borrowing, renting

factors of production, producing capital-goods output, and repaying its loan.
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4.2.5 ...and Profit Maximization

Finally, the dynamic profit function of the “large” representative firm (“large” because of the

semi-autonomous measure of capital-good entrepreneurs within the representative firm) is

E0

∞∑
t=0

γtΞt|0

{
η

(
qtf(ω̄t)

1− qtg(ω̄t)
(keit [rt + qt(1− δ)] + et)− qtkeit+1

)
+ ztF (kit, nit)− wtnit − rtkit

}
.

(14)

Maximization of (14) with respect to capital rental kit and labor hiring nit gives rise to the capital

demand condition

rt = ztFk(kit, nit) (15)

and the labor demand condition

wt = ztFn(kit, nit). (16)

Maximization of (14) with respect to entrepreneurial asset accumulation keit+1 yields the capital

Euler equation for the semi-autonomous entrepreneurs,

qt = γEt

{
Ξt+1|t

(
qt+1f(ω̄t+1)

1− qt+1g(ω̄t+1)

)
[rt+1 + qt+1(1− δ)]

}
, (17)

which, note, is independent of entrepreneur-i conditions.

4.2.6 Aggregation

Capital-producing firms are heterogenous with respect to their net worth and differ (only) in size —

a firm with a larger net worth receives a proportionately larger loan and so produces more capital.

However, the size distribution of firms is irrelevant for computing prices and hence aggregates in

the economy, which makes the agency-cost framework tractable in a DSGE setting. The capital-

production side of the economy can thus be analyzed as if there were a representative entrepreneur

that held the average quantity of net worth. The specific assumptions and results behind this

aggregation result are: the constant-returns nature of the production function F (.); the linearity

of the monitoring technology (in the quantity monitored); and, crucially, the result that the price

rt and Tobin’s qt are identical for all production units.26

The stand-in “large” representative firm has a profit function identical to (14) (with firm indices

dropped), which clearly gives rise to the same optimality conditions (15), (16), and (17). The

(aggregate) profits that get transferred to households are thus

Πt = Πe
t =

qtf(ω̄t)

1− qtg(ω̄t)
(ket [rt + qt(1− δ)] + et)− ket+1 + ztF (kt, nt)− wtnt − rtkt

26The result that q is identical for all firms is an implication of zero persistence of firms’ idiosyncratic productivity,

which, as described above, makes it impossible to condition the contractually-specified liquidation threshold ω̄ on

production-unit-specific variables. See also CF (1997, 1998) for further discussion.

14



=
qtf(ω̄t)

1− qtg(ω̄t)
(ket [1 + rt − δ] + et)− ket+1 + ztF (kt, nt)− ztFn(kt, nt)nt − ztFk(kt, nt)kt

=
qtf(ω̄t)

1− qtg(ω̄t)
(ket [1 + rt − δ] + et)− ket+1. (18)

The second line makes use of the factor price conditions (15) and (16), and the third line follows

because F (.) is constant-returns. The capital Euler equation that arises from maximizing this

representative-firm profit function with respect to aggregate entrepreneurial capital holdings ket+1

is clearly identical to (17).

Finally, the transformation function of the economy is described jointly by the consumption-

goods resource frontier

ct + ηit = ztF (kt, nt), (19)

the investment-goods resource constraint

ηit [1− µΦ(ωt)] = kt+1 − (1− δ)kt, (20)

and the aggregate quantity of capital

kt = kht + ηket . (21)

Note that aggregate monitoring costs apply only to the capital-goods producers.

4.3 Private Sector Equilibrium

A symmetric private-sector equilibrium is made up of state-contingent endogenous processes

{ct, nt, kht+1, k
e
t+1, kt+1, it,Π

e
t , wt, rt, qt, ω̄t} that satisfy the following conditions: the labor-supply

condition

−v
′(nt)

u′(ct)
= wt; (22)

the labor-demand condition

wt = ztFn(kt, nt); (23)

the capital-demand condition

rt = ztFk(kt, nt); (24)

the representative household’s Euler equation for capital holdings

qt = Et
{

Ξt+1|t [rt+1 + qt+1(1− δ)]
}

; (25)

the (representative) entrepreneur’s Euler equation for capital holdings

qt = γEt

{
Ξt+1|t

(
qt+1f (ω̄t+1)

1− qt+1g (ω̄t+1)

)
[rt+1 + qt+1(1− δ)]

}
; (26)
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aggregate capital market clearing

kt = kht + ηket ; (27)

the law of motion for the aggregate capital stock

kt+1 = (1− δ)kt + ηit [1− µΦ(ω̄t)] ; (28)

the aggregate consumption-goods resource constraint

ct + ηit = ztF (kt, nt); (29)

the contractually-specified project size

it =
nwt

1− qtg (ω̄t)
, (30)

in which expression (7) for nwt is substituted in; the contractually-specified liquidation threshold

qtf(ω̄t)

1− qtg(ω̄t)
= −f

′(ω̄t)

g′(ω̄t)
; (31)

and the evolution of the average assets of firms (equivalently, the assets of the representative firm)

Πe
t + qtk

e
t+1 =

qtf(ω̄t)

1− qtg(ω̄t)
(ket [rt + qt(1− δ)] + et) . (32)

The private sector takes as given the stochastic process for {zt, E(ωt), σ
ω
t }∞t=0, k0, and E(ωt) = 1

∀t. To emphasize, and as noted above, conditions (30) and (31) characterize the partial-equilibrium

financial outcomes, and hence can be viewed (in partial equilibrium) as taking qt and net worth as

given.

5 Quantitative Analysis

5.1 Computational Strategy

Changes in cross-sectional risk are aggregate, not idiosyncratic, shocks in the model economy.

Because I track only aggregate outcomes and do not track any idiosyncratic outcomes, there is

no reason to think that local approximation methods will misrepresent the model’s aggregate dy-

namics.27 To study the dynamics of the model, I thus compute a first-order approximation of

the equilibrium.28 Because the main interest is in business cycle fluctuations, such methods are

likely to accurately portray the model’s dynamic behavior. This also reinforces the point made

27Recall the discussion above that, given the maintained assumptions of the model, aggregates in the model do not

depend on distributions of outcomes at the firm level.
28The numerical algorithm is my own implementation of the perturbation method described by Schmitt-Grohe and

Uribe (2004).
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by DLS (2008, p. 386) that linearization does not impose certainty equivalence on this type of

second-moment (a cross-sectional variance) shock. The quantitative results reported below are

thus fundamentally driven by the model’s mechanism — changes in cross-sectional risk, which then

potentially are transmitted to the real economy — rather than choice of approximation method.

Before presenting the dynamic results, I complete the description of the calibration of the model

(which was begun in Section 2) and briefly describe some of its long-run predictions.

5.2 Calibration

The novel aspect of the model calibration is the risk shock process using micro data. As described in

Section 2, long-run dispersion of firm productivity is σ̄ω = 0.156. This is about half the value used

by CF (1998, p. 590) and Bernanke, Gertler, and Gilchrist (1999, p. 1368), which are calibrated to

aggregate financial data, not firm-level data: the former set σ̄ω = 0.37, and the latter set σ̄ω = 0.28.

CMR’s estimate is σ̄ω = 0.26. Thus, direct micro evidence indicates less cross-sectional dispersion

than standard macro calibrations of agency-cost models.

As also discussed in Section 2, I assume sufficient smoothness in the average productivity and

risk processes so that I can set quarterly persistence parameters ρz = 0.83 and ρσω = 0.83, even

though the data on which the estimation is based are annual. This mismatch between (desired)

model frequency and empirical frequency raises the question of the appropriate calibration of the

standard errors of the quarterly innovations in the productivity and risk processes.29

Given the quarterly frequency of the model and the annual frequency of the data examined in

Section 2, I simply time aggregate the simulated data from the model, and set parameters σz and

σσω so that the annualized volatilities of average productivity and dispersion of productivity in

the model match their annual empirical counterparts. As documented in Section 2, the empirical

volatilities are, respectively, 1.26 percent and 3.15 percent.

This calibration procedure leads to σz = 0.002 and σσω = 0.0374. The quarterly innovation in

the aggregate productivity process, σz = 0.002, is about three times smaller than that “typically”

used in a baseline RBC model, in which a benchmark value is 0.007. Here, of course, σz = 0.002

is computed directly from micro data. For the sake of comparison with DLS and CMR, their

respective pairs of parameters are: σz = 0.007 and σσω = 0.007 (see DLS Table 4) and σz = 0.0046

and σσω = 0.07 (see CMR Table 2). As noted in the Introduction, the value σσω = 0.07 CMR obtain

and the value σσω = 0.0374 I obtain are highly similar given the completely different approaches

used to estimating this crucial parameter.

29Recall from Section 2 that the point estimates for annual persistence are ρz = 0.47 and ρσω = 0.48, and the

standard deviation of the annual innovations in the average productivity and risk processes are, respectively, 0.0111

and 0.0276.
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Besides the calibration of the exogenous processes, Table 3 lists all functional forms used in

the quantitative experiments, and Table 4 lists all baseline parameter settings. The preference and

production parameters are standard in business cycle models. One important point of comparison

to note is that households’ preferences are quasi-linear in labor just like in CF and DLS.

The agency cost parameter is set to µ = 0.15, which is the same as the calibrated value in Covas

and den Haan (2011) and in line with the estimate µ = 0.12 by Levin, Natalucci, and Zakrajsek

(2004). The value for entrepreneurs’ “additional” discount factor is set to γ = 0.96, which allows

the model to match a long-run annualized external finance premium of two percent. This value of

γ is quite close to CMR’s calibration γ = 0.985, and is a bit larger than the calibrations of CF and

BGG.

5.3 Long-Run Dispersion and Long-Run Equilibrium

The long-run deterministic (steady-state) equilibrium is computed numerically using a standard

nonlinear equation solver. The main comparative static exercise is presented in Figure 7, which

plots long-run equilibria as a function of long-run cross-sectional dispersion σ̄ω. The range of σ̄ω

in Figure 7 covers all of the parameter values used in CF, DLS, Bernanke, Gertler, and Gilchrist

(1999), and CMR. My estimate of σ̄ω lies in the low end of the interval in Figure 7.30

Figure 7 shows the long-run response of the economy to changes in σ̄ω. Focusing first on the

solid lines in Figure 7, aggregate quantities, such as GDP, gross investment, and consumption (for

brevity, the latter two are not shown in Figure 7), monotonically decline as long-run risk dispersion

σ̄ω increases. Regarding financial variables, long-run leverage (upper right panel) declines as σ̄ω

increases, and both the bankruptcy (aka reorganization) rate (middle left panel) and the long-run

gross external premium (middle right panel) increase as σ̄ω increases.

All of the other structural parameters are held fixed at their baseline values (see Table 4) in

the impulse response just described. There are many parameter changes with which we could

experiment, but, if we had to zoom in on just one parameter, the most important is the long-run

reorganization cost µ. If we instead chose to hold the (endogenous) reorganization rate fixed —

perhaps because it’s easier to empirically observe — then the long-run reorganization cost µ would

be larger. The consequences of larger values of µ as σ̄ω increases appear as the dashed-dotted lines

in Figure 7.31

Regardless of which of the two comparative static exercises displayed in Figure 7 is preferred,

a broad interpretation is that long-run aggregate quantities are relatively insensitive over a large

30As discussed in Section 2, the value I obtain of σ̄ω = 0.156 could be viewed as overstating long-run risk by a

factor of two, which is the reason that the lowest point of the interval of σ̄ω in Figure 7 is σ̄ω = 0.07.
31The solid and dashed-dotted lines in the bottom panel of Figure 7 are identical to each other, hence difficult to

distinguish.
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region of long-run dispersion. The insensitivity seems to be due to the zero steady-state elasticity

of the endogenous contract multiplier λ with respect to σ̄ω, which is quantitatively shown in the

bottom panel of Figure 7. This insensitivity of the steady-state elasticity of the contract multiplier

arises for any parameter value µ. To the best of my knowledge, the steady-state invariance of the

contract multiplier with respect to the dispersion of productivity has not previously been shown,

or, if it has been shown, has not been prominent in discussions of the CF (1997, 1998) models. The

steady-state invariance of the contract multiplier in the CF framework is an informative economic

summary of the “linearity” of the model.

For the baseline calibration of σ̄ω = 0.156, the model’s long-run leverage ratio is 0.67, which

is remarkably close to the average leverage ratio of 0.56 during the period 1973-1988, as Section 3

showed. The calibration of the model was not designed to match average leverage. Furthermore,

given the Masulis (1988) definition of leverage in the first line below, the subsequent lines charac-

terize leverage in model notation

`(ω̄;σω) ≡ debt

assets

=
i− nw

i− nw + nw

= 1− nw

i
.

As long-run dispersion σ̄ω shrinks to zero, lenders face no risk whatsoever on their loans, which in

turn implies entrepreneurs have to accumalate zero net worth. Leverage thus approaches its upper

limit of unity as σ̄ω → 0.32

It is useful to also highlight that the long-run values implied by the model (using the baseline

calibration in Table 4) of the (annualized) finance premium is in line with most of the measures of

premia presented in DeGraeve (2008), and the bankruptcy/reorganization rate is lower than in the

Dun & Bradstreet evidence cited by CF (1998, p. 590).33

5.4 Business Cycle Dynamics

Now I turn to the model’s cyclical fluctuations.

32The extreme case of σ̄ω = 0 is simply the textbook RBC model.
33As discussed extensively by DeGraeve (2008), it is not clear what is the most relevant empirical counterpart to the

model’s external finance premium. Many natural alternatives suggest themselves, such as the difference between the

prime borrowing rate and the short-term T-bill rate, the interest spread between AAA-rated commercial paper and

T-bills, the spread between BB (2013) B-commercial paper and T-bills, and so on. DeGraeve (2008) documents that

these various empirical measures of “the external finance premium” behave differently enough over the business cycle

that it remains an open question what the natural empirical counterpart of the model’s external finance premium is.
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5.4.1 Risk Shocks

The first set of experiments conducted is dynamics driven by risk shocks alone. Figure 8 presents

impulse responses to a one-time, one-standard-deviation positive shock to the cross-sectional dis-

persion of entrepreneurs’ productivity, holding constant average productivity. The distribution

of entrepreneurial productivity thus has larger idiosyncratic risk. Complementing this impulse-

response analysis are the simulated business cycle statistics reported in Table 6. There are two

main results from these experiments from a purely risk-shock driven economy.

As Figure 8 highlights, a pure risk shock induces hump-shaped downturns in both GDP and

investment. These downturns are quantitatively large: at the peak of their respective declines,

GDP falls by 0.5 percent compared to its steady state, and investment falls by over 1.5 percent.

Aggregate consumption (in the middle-left panel in Figure 8), however, is countercyclical with

respect to GDP upon a risk shock. The degree of countercyclicality (-0.44, in annualized terms) is

shown in Table 6, which is in line with the results in DLS (p. 391, second row of Table 4).

Despite the challenge of understanding the economic intuition behind the countercyclicality of

consumption — one candidate explanation is that the tractable, but small-scale, CF model was

simply not designed to capture this moment in response to a risk shock — the economic intuition of

the impulse responses of financial variables are clear. Upon a temporary increase in entrepreneurial

risk, leverage declines, Tobin’s q declines, and the external premium rises, all of which induce

entrepreneurs to accumulate internal funds.

5.4.2 Both Risk Shocks and Average Productivity Shocks...

Next, consider the model economy’s dynamics when hit by independent shocks to both average

productivity and cross-firm dispersion. Important to keep in mind here is that both of these shock

processes, as described in Section 2, were measured using micro data, with the remaining parameters

calibrated as in a standard macro model. Whether or not these micro-based processes together with

the parsimonious set of “standard macro parameters” portray well empirically-relevant aggregate

business cycles during the years 1973-1988 is an open question.

Table 7 shows that it portrays quantity fluctuations and labor fluctuations remarkably well,

especially given the small-scale nature of the model and the limited number of shocks. Variance

decomposition shows that 4.6% of GDP volatility is account for by risk shocks. The main exception,

as noted above, is the countercyclicality of consumption with GDP. Before rushing to judgement,

we should keep two things in mind: 1) as stated in Section 5.4.1, perhaps the small-scale CF model

was not designed to capture the procyclicality of both consumption and investment with GDP in

response to risk shocks; and 2) the recessionary nature of the U.S. economy during 1973-1988 —

38 of the 64 quarters during that period are defined by the NBER as contractions.
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5.4.3 ...and Micro vs. Macro Calibration of Risk Shocks

Taken together, a main take-away message from the results presented here and those of CMR is

that they both convey the same quantitative result that risk shocks lead to a significant fraction

of GDP volatility. One of CMR’s headline results is that 20% of GDP business-cycle fluctuations

are driven by risk shocks, whereas I find that nearly 5% of GDP volatility is driven by risk shocks.

Fully comparing and contrasting CMR’s results to the ones of this paper is challenging due to

the richness of their model vs. the small-scale model considered here. But the fact that using a

completely different data set and a much smaller-scale DSGE model conveys the same big-picture

message that risk shocks matter for macro fluctuation is remarkable.

6 Conclusion

This paper measured the business-cycle properties of cross-sectional productivity risk based on

micro-level data. Micro-disciplined risk is fairly volatile over the cycle and highly countercyclical.

Using a small-scale quantitative financial accelerator model, which, by changing just two param-

eters, nests the frictionless RBC model, the main theoretical question was to assess the extent to

which micro-disciplined cross-sectional risk can explain aggregate volatility. Empirically-relevant

micro risk shocks turn out to drive nearly 5% of GDP volatility, which is remarkably large given

the small-scale nature of the framework and that there are only two shocks driving the model (risk

shocks and aggregate productivity shocks).

The sparse model makes clear that risk shocks can have significant impacts on aggregate mea-

sures of the economy. However, due to its sparsity, it cannot be expected to match all of the

business-cycle moments that the macroeconomics profession typically looks at. Instead, it’s the

combination of risk shocks and the transmission mechanism embedded in any given structural

model that matters. The mechanism of the small-scale financial accelerator model is at the heart

of many medium-scale frameworks that have recently been emerging.
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A Leverage: Empirics and Theory

As noted in the Introduction, the risk-shock calibration of Section 2 turns out to endogenously

match quite well the time-series average of empirical leverage as provided in Masulis (1988) and

extended to include the years 1987 and 1988 so that it covers the time period used in estimating the

risk shock process. Table 1 displays the leverage data, which is for the manufacturing sector. The

average leverage ratio during 1973-1988 was 0.56, which is quite close to the 0.67 in the calibrated

model of Section 5, even though leverage was not a calibration target.

Formally, given the nature of the CF investment model, in which both the ex-ante signing of

contracts and ex-post resolutions of contracts occurs intraperiod, we only need to zoom in on the

equilibrium contractual conditions (30) and (31). To emphasize that the contractual terms depend

on σω, for this Appendix I write f (ω̄, σω) and g (ω̄, σω), omitting time subscripts because the

contract is intraperiod.

Let `(ω̄;σω) denote leverage (and recall that i denotes investment and nw denotes net worth).

Defining leverage as in Masulis (1988) in the first line, the subsequent lines characterize leverage

in model notation

`(ω̄;σω) ≡ debt

assets

=
i− nw

i− nw + nw

= 1− nw

i

= 1− (1− qg(ω̄;σω))

= qg(ω̄;σω), (33)

in which the next-to-last line uses the contractual version of the (binding) zero-profit condition (30)

of the lender.

Inserting this expression for `(ω̄;σω) into condition (31), which characterizes the terms of the

financial contract, allows for yet another way of expressing leverage,

`(ω̄;σω) = 1 +
qf(ω̄;σω)gω̄(ω̄;σω)

fω̄(ω̄;σω)
. (34)

The expected share functions f(.) and g(.) and their derivatives depend on the cross-sectional

dispersion σω of firm productivity, hence the leverage ratio also depends on σω.

The contract maximization problem was briefly mentioned in Section 4, but not fully fleshed

out. Formally, the lender and capital producer i maximize

qf (ω̄, σω) ii (35)

subject to

qg (ω̄, σω) ii ≥ ii − nwi (36)
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with respect to ii and ω̄. Letting λ denote the multiplier on the lending constraint, the first-order

conditions with respect to ii and ω̄ are

qf (ω̄, σω) + λ [qg (ω̄, σω)− 1] = 0 (37)

and

qfω̄ (ω̄, σω) ii + λqgω̄ (ω̄, σω) ii = 0. (38)

The contract multiplier can thus be stated as either

λ = −fω̄(ω̄, σω)

gω̄(ω̄, σω)
(39)

or

λ =
qf(ω̄, σω)

1− qg(ω̄, σω)
. (40)

Equalizing these two expressions for λ gives exactly the equilibrium condition (31). (Important to

emphasize is that conditions (30) and (31) are purely static (within-period) conditions. Thus, the

financial contract is of one-period duration.)

Figure 6 sketches why changes in the cross-sectional dispersion of firms’ TFP would be expected

to cause changes in leverage. Suppose the solid black curve in Figure 6 is the pdf φ(ω) before a risk

shock occurs. The liquidation threshold ω̄ shown is for this initial distribution. Suppose there is an

exogenous reduction in dispersion. If the liquidation threshold ω̄ were to remain unchanged, fewer

firms would draw an idiosyncratic ω < ω̄, which lenders understand because the density φ(ω) is

common knowledge. This in turn means that fewer firms are expected to be unable to repay their

loans, which reduces lenders’ risk. Conditional on a value for ω̄, lenders would be willing to extend

more credit, which implies higher leverage ratios for firms (borrowers). In equilibrium, ω̄ will of

course also change, which can only be determined quantitatively given the log-linear distribution

of idiosyncratic productivity used in Section 5.
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B Bundled Shocks: Productivity-Induced Risk Fluctuations

Countercyclicality of risk can be modeled by linking time-variation in average TFP directly to

fluctuations in the cross-section of risk. Specifically, the cross-sectional dispersion of productivity

across entrepreneurs is now assumed to decline when average TFP improves. Second-moment

shocks are thus assumed to be bundled with first-moment shocks, and I refer to the entire bundle

as an “aggregate shock.” The two processes are assumed to be linked according to

lnσωt = ln σ̄ω + ϕ ln zt. (41)

This condition replaces the exogenous law of motion (1) for lnσωt , and the evolution of ln zt is still

characterized by (2). The rest of the model is exactly the same. The elasticity ϕ is clearly the key

parameter of the bundled-shock version of the model, with ϕ < 0 implying countercyclicality of

firm-level risk.34 In terms of correlation between average TFP and dispersion of entrepreneurial pro-

ductivity, ϕ < 0 obviously implies a perfect negative correlation between the two, but this portrayal

is not counterfactually stark compared to the data; recall from Section 2 that the contemporaneous

cyclical correlation between average TFP and dispersion of TFP is -0.98.

Figure 10 illustrates why ϕ < 0 leads to countercyclical risk. A positive shift in average TFP

will, all else equal, increase GDP. If at the same time cross-sectional dispersion declines due to

ϕ < 0, and supposing initially that the bankruptcy threshold ω̄ were fixed, fewer firms would be

expected to go bankrupt. This in turn would induce lenders to extend more credit, hence leverage

rises for given net worth. Indeed, the second part of the intuitive argument is exactly the same as

that underlying Figure 6. What is different from the baseline model is the event that now induces

the change in dispersion. In the baseline model, the change in dispersion itself was the exogenous

event, whereas here the source is a positive shock to average TFP.

This bundled aggregate shock is of course a reduced-form construct. However, I bring the

same empirical evidence presented in Section 5.2 to bear on the calibration of the crucial elasticity

parameter ϕ. The calibration approach is to choose ϕ so that the model matches the observed

time-series variation in cross-sectional dispersion. Section 5.2 documented that the time-series

volatility in annual cross-sectional dispersion is 3.15 percent. Given this target and holding fixed

all parameters in Table 4, this calibration procedure (with average TFP fluctuations now as the

sole truly exogenous driving process) leads to ϕ = −2.5.

Table 9 presents simulation-based business cycle statistics. Aggregate quantity volatility is

smaller compared to Table 7. But, by construction of the bundled-shock model, the results are

consistent with the empirically-observed countercyclicality of cross-sectional firm risk (see the last

34Clearly, ϕ > 0 would deliver procyclical entrepreneurial risk, and ϕ = 0 would recover the baseline CF model in

which there are never any changes in firm risk.
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two rows of the lower panel of Table 9). Although I do not take up this extension here, a conjecture

is that a combination of bundled shocks along with independent, exogenous, shocks to firm risk

may help in capturing all these dimensions of the data.35

35Of course, there are a host of other model features and/or shocks one could consider introducing to the model.

Such analysis is left to future work.
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Figure 1: Cross-sectional dispersion of profitability. Cross-sectional coefficient of variation of firm-

level profitability over the period 1974-1988. Data are annual. Trend component constructed with HP filter

(smoothing parameter 100). Based on profitability series from Cooper and Haltiwanger (2006).
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Figure 2: Cyclical component of cross-sectional dispersion of profitability. Cyclical component

of cross-sectional coefficient of variation of firm-level profitability over the period 1974-1988. Vertical axis

is percentage deviation from HP trend. Computed from profitability residuals constructed by Cooper and

Haltiwanger (2006).
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Figure 3: Mean profitability. Mean level of firm-level profitability residuals over the period 1974-1988.

Data are annual. Trend component constructed with HP filter (smoothing parameter 100). Based on

profitability series from Cooper and Haltiwanger (2006).
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Figure 4: Cyclical profitability residuals. Cyclical component of mean of firm-level profitability residuals

over the period 1974-1988. Vertical axis is percentage deviation from HP trend. Computed from profitability

residuals constructed by Cooper and Haltiwanger (2006).
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Period t-1 Period t+1
Aggregate 

TFP 
realized

kt

Capital-producer-
specific 

productivity 
realized

kt+1

Capital production 
occurs by all firms

Solvent capital 
producers repay 
their entire debt

Costs incurred to 
reorganize insolvent 

capital producers and 
seize all their output

Aggregate net profit 
payouts to 
households

Factors of 
production (kt and 
nt) rented in spot 

markets to produce 
consumption ct

Household makes 
aggregate 

consumption and 
investment 

choices

Resources from 
households lent to 
capital producers 

(through CMF)

Figure 5: Timing of events. The term “CMF” refers to capital mutual funds, as described in Carlstrom

and Fuerst (1997, Table 1).
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Figure 6: Mean-preserving spread. An exogenous decrease in dispersion of productivity across en-

trepreneurs. The bankruptcy threshold ω̄ shown is for the original distribution; if the threshold were to

remain unchanged, fewer entrepreneurs would be expected to go bankrupt, which in turn would make lenders

willing to allow larger leverage ratios.
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Figure 7: Long-run equilibrium. Steady-state equilibrium as long-run standard deviation of idiosyncratic

productivity distribution, σ̄ω, varies; σ̄ω plotted on horizontal axis. Solid line: all other model parameters

held fixed as in Table 4. Dashed-dotted line: all other model parameters held fixed as in Table 4, except the

bankruptcy cost µ, which varies with σ̄ω to maintain a long-run reorganization rate across σ̄ω.
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Figure 8: Impulse response to risk shock. Impact of a one-standard-deviation exogenous increase in the

dispersion σω of firm productivity (upper-left panel), holding constant average productivity. Unless stated

otherwise, vertical scale measures percent deviation from steady state. Shock occurs in period 5.
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Figure 9: Impulse response to average productivity shock. Impact of a one-standard-deviation

exogenous increase in average productivity z (upper-left panel), holding constant dispersion σω. Unless

stated otherwise, vertical scale measures percent deviation from steady state. Shock occurs in period 5.
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Figure 10: Bundled shock. An endogenous decrease in dispersion of productivity across entrepreneurs.

The bankruptcy threshold ω̄ shown is for the original distribution; if the threshold were to remain unchanged,

fewer entrepreneurs would be expected to go bankrupt, which in turn would induce lenders to allow larger

leverage ratios.
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Year Leverage

1973 0.51

1974 0.53

1975 0.52

1976 0.53

1977 0.53

1978 0.54

1979 0.55

1980 0.56

1981 0.56

1982 0.56

1983 0.57

1984 0.58

1985 0.58

1986 0.62

1987 0.62

1988 0.63

Table 1: Annual leverage ratios (≡ debt/total assets) for the manufacturing sector, 1973-

1988. Sources: for 1973-1979, Masulis (1988, Tables 1-3); for 1980-1986, Statistics of Income, Corpo-

ration Source Books, IRS (http://www.irs.gov/uac/SOI-Tax-Stats-Archive — 1929-to-1999-Corporation-

Source-Book); for 1987-1988, Statistics of Income Bulletins, Corporation Income Tax Returns, IRS

(http://www.irs.gov/uac/SOI-Tax-Stats-SOI-Bulletins).
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GDP C I hours leverage

Std. dev. (%) 2.31 2.10 8.38 2.08 1.36

Relative std. dev (/GDP) 1 0.90 3.62 0.89 0.58

Auto. corr. 0.51 0.72 0.18 0.55 0.01

Corr. w/ GDP 1 0.88 0.86 0.83 0.02

Table 2: Empirical business cycle dynamics. 1973-1988 annual business cycle comovements for standard

macro aggregates: real GDP, real personal consumption expenditures, gross investment in nonresidential

investment, total hours worked, leverage ratio in U.S. manufacturing sector. Sources for leverage data: for

1973-1979, Masulis (1988, Tables 1-3); for 1980-1986, Statistics of Income, Corporation Source Books, IRS

(http://www.irs.gov/uac/SOI-Tax-Stats-Archive — 1929-to-1999-Corporation-Source-Book); for 1987-1988,

Statistics of Income Bulletins, Corporation Income Tax Returns, IRS (http://www.irs.gov/uac/SOI-Tax-

Stats-SOI-Bulletins). Based on annual HP-filtered cyclical components.

Functional Form Description

lnσωt+1 = (1− ρσω) ln σ̄ω + ρσω lnσωt + εσ
ω

t+1 Exogenous process for firm productivity dispersion

ln zt+1 = ρz ln zt + εzt+1 Exogenous process for mean of TFP

u(c) = ln c Consumption subutility

v(n) = −ψn Labor subutility

F (k, n) = kαn1−α Production technology

Table 3: Functional forms for quantitative analysis.
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Parameter Value Description/Notes

Preferences

β = 0.99 Households’ quarterly subjective discount factor

γ = 0.96 Autonomous capital-producers’ quarterly subjective discount factor

ψ = 2.90 Labor calibrating parameter

Production Technology

α = 0.36 Capital’s share in production function

δ = 0.02 Depreciation rate of capital

Financial Markets and Agency Costs

µ = 0.15 Per-unit monitoring cost

E(ωt) = 1 Mean of idiosyncratic productivity

η = 0.02 Measure of capital-producing entrepreneurs

σ̄ω = 0.156 Long-run standard deviation of distribution of lnω

ρσω = 0.83 Quarterly persistence of log firm risk process

σσω = 0.0033 Standard deviation of innovations to log firm risk

Exogenous Process

ρz = 0.83 Quarterly persistence of log mean-TFP process

σz = 0.002 Standard deviation of innovations to log mean-TFP

Table 4: Parameter values.

Financial Measure Long-Run Value

Leverage ratio, `(ω̄) 0.672

External premium 2.00 percent

Bankruptcy rate, 100Φ(ω̄) 1.60 percent

Reorganization costs / GDP 0.21 percent

Table 5: Long-run financial variables. External premium, ω̄/g(ω̄), reported in annualized terms. Fourth

line reports the percentage of GDP absorbed by reorganization costs, µΦ(ω̄).
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GDP C I hours leverage

Std. dev. (%) 3.15 2.22 8.09 2.12 16.25

Relative std. dev (/GDP) 1 0.70 2.57 0.67 5.16

Auto. corr. 0.99 0.99 0.99 0.99 0.99

Corr. w/ GDP 1 -0.44 0.89 0.83 0.90

Annual std. dev (%) average productivity — (Data: 1.26)

Annual std. dev (%) σω 3.14 (Data: 3.15)

Annual correlation (GDP, σω) 0.06 (Data: -0.83)

Annual correlation (average productivity, σω) — (Data: -0.98)

Table 6: Risk shocks only. Annualized simulation-based business cycle statistics.

GDP C I hours leverage

Std. dev. (%) 3.28 2.41 8.42 2.22 17.03

Relative std. dev (/GDP) 1 0.74 2.57 0.68 5.19

Auto. corr. 0.97 0.98 0.99 0.98 0.97

Corr. w/ GDP 1 -0.39 0.88 0.80 0.88

Annual std. dev (%) average productivity 1.27 (Data: 1.26)

Annual std. dev (%) σω 3.14 (Data: 3.15)

Annual correlation (GDP, σω) 0.07 (Data: -0.83)

Annual correlation (average productivity, σω) -0.27 (Data: -0.98)

Table 7: Independent average productivity shocks and risk shocks. Annualized simulation-based

business cycle statistics.
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GDP C I hours leverage

Std. dev. (%) 1.09 0.95 2.63 0.71 4.87

Relative std. dev (/GDP) 1 0.87 2.41 0.65 4.46

Auto. corr. 0.97 0.96 0.99 0.98 0.99

Corr. w/ GDP 1 -0.08 0.80 0.65 0.80

Annual std. dev (%) average productivity 1.27 (Data: 1.26)

Annual std. dev (%) σω — (Data: 3.15)

Annual correlation (GDP, σω) — (Data: -0.83)

Annual correlation (average productivity, σω) — (Data: -0.98)

Table 8: Average productivity shocks only. Annualized simulation-based business cycle statistics.

GDP C I hours leverage

Std. dev. (%) 0.66 0.68 1.46 0.41 2.67

Relative std. dev (/GDP) 1 1.02 2.19 0.62 4.08

Auto. corr. 0.95 0.93 0.99 0.98 0.99

Corr. w/ GDP 1 0.18 0.69 0.46 0.68

Annual std. dev (%) TFP 1.26 (Data: 1.26)

Annual std. dev (%) σω 3.15 (Data: 3.15)

Annual correlation (GDP, σω) -0.51 (Data: -0.83)

Annual correlation (TFP, σω) -1 (Data: -0.98)

Table 9: Bundled aggregate shocks. Annualized simulation-based business cycle statistics, in which

average productivity (first moment) shocks induce changes in cross-sectional dispersion. Elasticity parameter

ϕ = −2.5.
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